Skip to main content
Log in

Recent research trends in perfluoropolyether for energy device applications: a mini review

  • Review
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Fluorinated polymers are a significant class of functional materials in the field of polymer chemistry. Endowed with remarkable properties, such as high chemical and solvent resistance, enhanced electrical properties, high thermal and electrochemical stability, and low surface energy, they find potential applications in various fields such as chemical processing, electrical/electronic industries, automotive/aircraft industries, medical instrumentations, consumer products, and energy storage or conversion devices. Among a wide variety of commercially significant fluorinated polymers, perfluoropolyether (PFPE) plays a substantial role in energy applications because of its super-hydrophobicity, non-crystallinity, non-flammability, low toxicity, and gas-permeability features. This review briefly confers the properties, production, and significant studies of perfluoropolyether as electrolytes in batteries, followed by a detailed discussion on their role as solid electrolyte interphase (SEI) in metal-ion batteries, oxygen selective membrane (OSM) in metal–air batteries, and as a hydrophobic coating for gas diffusion electrodes in fuel cell applications. Besides, other energy-related applications of PFPE that open up the future scopes of perfluoropolyether in the field of energy storage and conversion devices are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Scheme 3.
Fig. 1
Fig. 2

Copyright 2022, The Author(s), under exclusive license to Springer Nature Limited

Fig. 3

Copyright 2022 Elsevier B.V. All rights reserved

Fig. 4

Copyright 2018 Published by Elsevier B.V

Fig. 5

Copyright 2008 ECS—The Electrochemical Society. eg Optical microscope images of MPL surfaces: GDM-PTFE; GDM-PFPE-12; GDM-PFPE-6 at (40 ×) depicting the variation in surface cracks. Reprinted with permission from Ref. [66]. Copyright 2015 by the authors; licensee MDPI, Basel, Switzerland. h, i Polarization curves and diffusion resistance obtained upon 500 h of constant current durability tests and accelerated stress tests for PFPE and PTFE GDLs, respectively (Operating condition: 80 °C and 80–100% RH). Reprinted with permission from Ref. [67]. Copyright 2020 WILEY–VCH Verlag GmbH & Co. KGaA, Weinheim

Similar content being viewed by others

References

  1. R. Lohmann, I.T. Cousins, J.C. DeWitt, J. Glüge, G. Goldenman, D. Herzke, A.B. Lindstrom, M.F. Miller, C.A. Ng, S. Patton, M. Scheringer, X. Trier, Z. Wang, Are Fluoropolymers Really of Low Concern for Human and Environmental Health and Separate from Other PFAS?Environ. Sci. Technol. 54(20), 12820–12828 (2020). https://doi.org/10.1021/acs.est.0c03244

    Article  CAS  Google Scholar 

  2. R.C. Buck, J. Franklin, U. Berger, J.M. Conder, I.T. Cousins, P. de Voogt, A.A. Jensen, K. Kannan, S.A. Mabury, S.P.J. van Leeuwen, Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integr. Environ. Assess. Manag. 7(4), 513–541 (2011). https://doi.org/10.1002/ieam.258

    Article  CAS  Google Scholar 

  3. 6 - Introduction to Fluoropolymers∗, in: S. Ebnesajjad (Ed.) Introduction to Fluoropolymers, William Andrew Publishing, Oxford, 2013, pp. 63–89. https://www.sciencedirect.com/science/article/pii/B9781455774425000061

  4. H. Shimomoto, Poly(tetrafluoroethylene) and Other Fluorine-Containing Polymers, in: S. Kobayashi, K. Müllen (Eds.) Encyclopedia of Polymeric Nanomaterials, Springer Berlin Heidelberg, Berlin, Heidelberg, 2021, pp. 1–6. https://doi.org/10.1007/978-3-642-36199-9_245-1

  5. R.J. Letcher, S. Chu, S.-A. Smyth, Side-chain fluorinated polymer surfactants in biosolids from wastewater treatment plants.J. Hazard. Mater. 388(122044 (2020). https://www.sciencedirect.com/science/article/pii/S0304389420300303

  6. J. Gardiner, Fluoropolymers: Origin, Production, and Industrial and Commercial Applications. Aust. J. Chem. 68(1), 13–22 (2015). https://doi.org/10.1071/CH14165

    Article  CAS  Google Scholar 

  7. B. Ameduri, Fluoropolymers: The Right Material for the Right Applications. Chem. A Eur. J. 24(71), 18830–18841 (2018). https://doi.org/10.1002/chem.201802708

    Article  CAS  Google Scholar 

  8. M.G. Evich, M.J.B. Davis, J.P. McCord, B. Acrey, J.A. Awkerman, D.R.U. Knappe, A.B. Lindstrom, T.F. Speth, C. Tebes-Stevens, M.J. Strynar, Z. Wang, E.J. Weber, W.M. Henderson, J.W. Washington, Per- and polyfluoroalkyl substances in the environment. Science 375, 6580 (2022). https://doi.org/10.1126/science.abg9065

    Article  CAS  Google Scholar 

  9. G. Lopez, B. Ameduri, J.-P. Habas, A Versatile Strategy to Synthesize Perfluoropolyether-Based Thermoplastic Fluoropolymers by Alkyne-Azide Step-Growth Polymerization. Macromol. Rapid Commun. 37(8), 711–717 (2016). https://doi.org/10.1002/marc.201500658

    Article  CAS  Google Scholar 

  10. G. Trusiano, A. Vitale, J. Pulfer, J. Newton, C. Joly-Duhamel, C.M. Friesen, R. Bongiovanni, Novel perfluoropolyalkylethers monomers: synthesis and photo-induced cationic polymerization. Colloid. Polym. Sci. 299(7), 1173–1188 (2021). https://doi.org/10.1007/s00396-021-04838-1

    Article  CAS  Google Scholar 

  11. R. Bongiovanni, A. Medici, A. Zompatori, S. Garavaglia, C. Tonelli, Perfluoropolyether polymers by UV curing: design, synthesis and characterization. Polym. Int. 61(1), 65–73 (2012). https://doi.org/10.1002/pi.3149

    Article  CAS  Google Scholar 

  12. T. Demir Caliskan, L. Wei, I. Luzinov, Perfluoropolyether-based oleophobic additives: Influence of molecular weight distribution on wettability of polyethylene terephthalate films.J. Fluorine Chem. 244(109747 (2021). https://www.sciencedirect.com/science/article/pii/S0022113921000257

  13. G. Malinverno, G. Pantini, J. Bootman, Safety evaluation of perfluoropolyethers, liquid polymers used in barrier creams and other skin-care products.Food Chem. Toxicol. 34(7), 639–650 (1996). https://www.sciencedirect.com/science/article/pii/0278691596000233

  14. L. Wei, T.D. Caliskan, P.J. Brown, I.J.P. Luzinov, Towards a Long-Chain Perfluoroalkyl Replacement: Water and Oil Repellent Perfluoropolyether-Based Polyurethane Oligomers. 13(7), 1128 (2021)

    CAS  Google Scholar 

  15. G. Caporiccio, L. Flabbi, G. Marchionni, G.T. Viola, The properties and applications of Perfluoropolyether lubricants. J. Synth. Lubr. 6(2), 133–149 (1989). https://doi.org/10.1002/jsl.3000060205

    Article  CAS  Google Scholar 

  16. C.E. Snyder Jr, L.J. Gschwender, C. Tamborski, Linear polyperfluoroalkylether-based wide-liquid-range high-temperature fluids and lubricants. Lubr. Eng. 37(6), 344–349 (1981). https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019574870&partnerID=40&md5=22563ef34150d5bfc1021182d703927e

  17. J. Muslim, Study of dielectric liquids as alternative encapsulant for high temperature electronics power modules applications, in, Université Grenoble Alpes (ComUE), 2019.

  18. D. Sianesi, G. Marchionni, R.J. De Pasquale, Perfluoropolyethers (PFPEs) from Perfluoroolefin Photooxidation, in: R.E. Banks, B.E. Smart, J.C. Tatlow (Eds.) Organofluorine Chemistry: Principles and Commercial Applications, Springer US, Boston, MA, 1994, pp. 431–461. https://doi.org/10.1007/978-1-4899-1202-2_21

  19. J.T. Hill, J.P. Erdman, Anionic Polymerization of Fluorocarbon Epoxides Ring-Opening Polymerization. Am. Chem. Soc. (1977). https://doi.org/10.1021/bk-1977-0059.ch019

    Article  Google Scholar 

  20. S.V. Kostjuk, E. Ortega, F. Ganachaud, B. Améduri, B. Boutevin, Anionic Ring-Opening Polymerization of Hexafluoropropylene Oxide Using Alkali Metal Fluorides as Catalysts: A Mechanistic Study. Macromolecules 42(3), 612–619 (2009). https://doi.org/10.1021/ma8012338

    Article  CAS  Google Scholar 

  21. A.K. Joel, R.D. Chambers, J.P.S. Badyal, Polyfluoroalkyl derivatives of polyethers.J. Fluorine Chem. 58(2), 336 (1992). https://www.sciencedirect.com/science/article/pii/S0022113900808015

  22. C.M. Friesen, B. Améduri, Outstanding telechelic perfluoropolyalkylethers and applications therefrom.Prog. Polym. Sci. 81(238–280 (2018). https://www.sciencedirect.com/science/article/pii/S0079670017301673

  23. L. Du, J.Y. Kelly, G.W. Roberts, J.M. DeSimone, Fluoropolymer synthesis in supercritical carbon dioxide.The Journal of Supercritical Fluids 47(3), 447–457 (2009). https://www.sciencedirect.com/science/article/pii/S0896844608003781

  24. C. Bonneaud, J. Howell, R. Bongiovanni, C. Joly-Duhamel, C.M. Friesen, Diversity of Synthetic Approaches to Functionalized Perfluoropolyalkylether Polymers. Macromolecules 54(2), 521–550 (2021). https://doi.org/10.1021/acs.macromol.0c01599

    Article  CAS  Google Scholar 

  25. H.-S. Lim, L. Liu, H.-J. Lee, J.-M. Cha, D.-K. Yoon, B.-K. Ryu, The study on the interface characteristics of solid-state electrolyte. J. Korean. Ceram. Soc. (2021). https://doi.org/10.1007/s43207-021-00110-y

    Article  Google Scholar 

  26. F. Gebert, M. Longhini, F. Conti, A.J. Naylor, An electrochemical evaluation of state-of-the-art non-flammable liquid electrolytes for high-voltage lithium-ion batteries.J. Power Sources 556(232412 (2023). https://www.sciencedirect.com/science/article/pii/S0378775322013891

  27. D.H.C. Wong, J.L. Thelen, Y. Fu, D. Devaux, A.A. Pandya, V.S. Battaglia, N.P. Balsara, J.M. DeSimone, Nonflammable perfluoropolyether-based electrolytes for lithium batteries. Proceed. Nat. Acad. Sci. (2014). https://doi.org/10.1073/pnas.1314615111

    Article  Google Scholar 

  28. K.R. Olson, D.H.C. Wong, M. Chintapalli, K. Timachova, R. Janusziewicz, W.F.M. Daniel, S. Mecham, S. Sheiko, N.P. Balsara, J.M. DeSimone, Liquid perfluoropolyether electrolytes with enhanced ionic conductivity for lithium battery applications.Polymer 100(126–133 (2016). https://www.sciencedirect.com/science/article/pii/S0032386116306772

  29. D. Devaux, Y.H. Chang, I. Villaluenga, X.C. Chen, M. Chintapalli, J.M. DeSimone, N.P. Balsara, Conductivity of carbonate- and perfluoropolyether-based electrolytes in porous separators.J. Power Sources 323(158–165 (2016). https://www.sciencedirect.com/science/article/pii/S0378775316305754

  30. M. Chintapalli, K. Timachova, K.R. Olson, S.J. Mecham, D. Devaux, J.M. DeSimone, N.P. Balsara, Relationship between Conductivity, Ion Diffusion, and Transference Number in Perfluoropolyether Electrolytes. Macromolecules 49(9), 3508–3515 (2016). https://doi.org/10.1021/acs.macromol.6b00412

    Article  CAS  Google Scholar 

  31. D.B. Shah, K.R. Olson, A. Karny, S.J. Mecham, J.M. DeSimone, N.P. Balsara, Effect of Anion Size on Conductivity and Transference Number of Perfluoroether Electrolytes with Lithium Salts. J. Electrochem. Soc. 164(14), A3511 (2017). https://doi.org/10.1149/2.0301714jes

    Article  CAS  Google Scholar 

  32. Y. Feng, X. Chen, H. Wei, Y. Pei, X. Tang, Chloroethoxy-terminated perfluoropolyether electrolytes with high lithium ion transference number for lithium battery applications.Polymer 178(121596 (2019). https://www.sciencedirect.com/science/article/pii/S0032386119305804

  33. K. Timachova, M. Chintapalli, K.R. Olson, S.J. Mecham, J.M. DeSimone, N.P. Balsara, Mechanism of ion transport in perfluoropolyether electrolytes with a lithium salt. Soft Matter (2017). https://doi.org/10.1039/C7SM00794A

    Article  Google Scholar 

  34. J.-H. Baik, D.-G. Kim, J.H. Lee, S. Kim, D.G. Hong, J.-C. Lee, Nonflammable and thermally stable gel polymer electrolytes based on crosslinked perfluoropolyether (PFPE) network for lithium battery applications.Journal of Industrial and Engineering Chemistry 64(453–460 (2018). https://www.sciencedirect.com/science/article/pii/S1226086X18301680

  35. I. Villaluenga, K.H. Wujcik, W. Tong, D. Devaux, D.H.C. Wong, J.M. DeSimone, N.P. Balsara, Compliant glass–polymer hybrid single ion-conducting electrolytes for lithium batteries. Proceed. Nat. Acad. Sci. (2016). https://doi.org/10.1073/pnas.1520394112

    Article  Google Scholar 

  36. D. Devaux, I. Villaluenga, M. Bhatt, D. Shah, X.C. Chen, J.L. Thelen, J.M. DeSimone, N.P. Balsara, Crosslinked perfluoropolyether solid electrolytes for lithium ion transport.Solid State Ionics 310(71–80 (2017). https://www.sciencedirect.com/science/article/pii/S0167273817305489

  37. L. Cong, J. Liu, M. Armand, A. Mauger, C.M. Julien, H. Xie, L. Sun, Role of perfluoropolyether-based electrolytes in lithium metal batteries: Implication for suppressed Al current collector corrosion and the stability of Li metal/electrolytes interfaces.J. Power Sources 380(115–125 (2018). https://www.sciencedirect.com/science/article/pii/S037877531830082X

  38. A. Tron, A. Nosenko, J. Mun, Thermal stability of active electrode material in contact with solid electrolyte. J. Korean. Ceram. Soc. (2022). https://doi.org/10.1007/s43207-021-00164-y

    Article  Google Scholar 

  39. J. Ko, Y.S. Yoon, Functional materials for modifying interfaces between solid electrolytes and lithium electrodes of all-solid-state lithium metal batteries. J. Korean. Ceram. Soc. (2023). https://doi.org/10.1007/s43207-023-00293-6

    Article  Google Scholar 

  40. L. Cong, Y. Li, W. Lu, J. Jie, Y. Liu, L. Sun, H. Xie, Unlocking the Poly(vinylidene fluoride-co-hexafluoropropylene)/Li10GeP2S12 composite solid-state Electrolytes for Dendrite-Free Li metal batteries assisting with perfluoropolyethers as bifunctional adjuvant.J. Power Sources 446(227365 (2020). https://www.sciencedirect.com/science/article/pii/S0378775319313588

  41. Y. Kamikawa, K. Amezawa, xLi6PS5Cl/(1–x)(Perfluoropolyethers-ethoxy-diol/Lithium Bis(trifluoromethanesulfonyl)imide) Electrolyte for Superior Stability against a Metallic Lithium Anode. ACS Appl. Energy. Mater. (2022). https://doi.org/10.1021/acsaem.2c01661

    Article  Google Scholar 

  42. Q. Yang, J. Hu, J. Meng, C. Li, C-F-rich oil drop as a non-expendable fluid interface modifier with low surface energy to stabilize a Li metal anode. Energy Environ. (2021). https://doi.org/10.1039/D0EE03952G

    Article  Google Scholar 

  43. C. Zheng, Y. Lu, Q. Chang, Z. Song, T. Xiu, J. Jin, M.E. Badding, Z. Wen, High-Performance Garnet-Type Solid-State Lithium Metal Batteries Enabled by Scalable Elastic and Li+-Conducting Interlayer. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202302729

    Article  Google Scholar 

  44. Y. Sun, X. Zhang, P. Xu, Y. Liu, F. Dong, C. Ma, J. Liu, H. Xie, Perfluoropolyether-based block copolymer electrolytes enabling high-temperature-resistant solid-state lithium metal batteries.J. Power Sources 561(232751 (2023). https://www.sciencedirect.com/science/article/pii/S037877532300126X

  45. C.V. Amanchukwu, A.B. Gunnarsdóttir, S. Choudhury, T.L. Newlove, P.C.M.M. Magusin, Z. Bao, C.P. Grey, Understanding Lithium-Ion Dynamics in Single-Ion and Salt-in-Polymer Perfluoropolyethers and Polyethyleneglycol Electrolytes Using Solid-State NMR. Macromolecules (2023). https://doi.org/10.1021/acs.macromol.2c02160

    Article  Google Scholar 

  46. D.B. Shah, H.Q. Nguyen, L.S. Grundy, K.R. Olson, S.J. Mecham, J.M. DeSimone, N.P. Balsara, Difference between approximate and rigorously measured transference numbers in fluorinated electrolytes. PCCP (2019). https://doi.org/10.1039/C9CP00216B

    Article  Google Scholar 

  47. M. Chintapalli, K. Timachova, K.R. Olson, S.J. Mecham, J.M. DeSimone, N.P. Balsara, Lithium Salt Distribution and Thermodynamics in Electrolytes Based on Short Perfluoropolyether-block-Poly(ethylene oxide) Copolymers. Macromolecules 53(4), 1142–1153 (2020). https://doi.org/10.1021/acs.macromol.9b01637

    Article  CAS  Google Scholar 

  48. M. Molashahi, H. Modarress, B. Nasernejad, S. Amjad-Iranagh, B. Ghalami Choobar, Structural and Transport Properties of Novel High-Transference Number Electrolytes Based on Perfluoropolyether-block-Poly(ethylene oxide) for Application in Lithium-Ion Batteries: A Molecular Dynamics Simulation Study. Macromolecules 55(23), 10556–10575 (2022)

    Article  CAS  Google Scholar 

  49. Y. Kamikawa, K. Amezawa, Computational Investigation of Lithium-Ion Transport Mechanisms in Perfluoropolyether Polymers. The Journal of Physical Chemistry C 126(25), 10237–10247 (2022). https://doi.org/10.1021/acs.jpcc.2c00895

    Article  CAS  Google Scholar 

  50. X. Wang, C. Zhang, M. Sawczyk, J. Sun, Q. Yuan, F. Chen, T.C. Mendes, P.C. Howlett, C. Fu, Y. Wang, X. Tan, D.J. Searles, P. Král, C.J. Hawker, A.K. Whittaker, M. Forsyth, Ultra-stable all-solid-state sodium metal batteries enabled by perfluoropolyether-based electrolytes. Nat. Mater. (2022). https://doi.org/10.1038/s41563-022-01296-0

    Article  Google Scholar 

  51. S. Tao, C. Zhang, J. Zhang, Y. Jiao, M. Li, W. Lin, L. Ran, B. Clement, M. Lyu, I. Gentle, L. Wang, R. Knibbe, A hydrophobic and fluorophilic coating layer for stable and reversible aqueous zinc metal anodes.Chem. Eng. J. 446(136607 (2022). https://www.sciencedirect.com/science/article/pii/S1385894722021027

  52. M. Xie, Z. Huang, X. Lin, Y. Li, Z. Huang, L. Yuan, Y. Shen, Y. Huang, Oxygen selective membrane based on perfluoropolyether for Li-Air battery with long cycle life.Energy Storage Materials 20(307–314 (2019). https://www.sciencedirect.com/science/article/pii/S2405829718310559

  53. B. Bertolotti, H. Messaoudi, L. Chikh, C. Vancaeyzeele, S. Alfonsi, O. Fichet, Stability in alkaline aqueous electrolyte of air electrode protected with fluorinated interpenetrating polymer network membrane.J. Power Sources 274(488–495 (2015). https://www.sciencedirect.com/science/article/pii/S0378775314016681

  54. X. Wen, X. Zhu, Y. Wu, Y. Wang, Z. Man, Z. Lv, X. Wang, A hydrophobic membrane to enable lithium-air batteries to operate in ambient air with a long cycle life.Electrochim. Acta 421(140517 (2022). https://www.sciencedirect.com/science/article/pii/S0013468622006764

  55. M. Mariani, A. Basso Peressut, S. Latorrata, R. Balzarotti, M. Sansotera, G. Dotelli, The Role of Fluorinated Polymers in the Water Management of Proton Exchange Membrane Fuel Cells: A Review. Energies 14(24), 8387 (2021). https://doi.org/10.3390/en14248387

    Article  CAS  Google Scholar 

  56. S. Latorrata, R. Balzarotti, P. Gallo Stampino, C. Cristiani, G. Dotelli, M. Guilizzoni, Design of properties and performances of innovative gas diffusion media for polymer electrolyte membrane fuel cells.Prog. Org. Coat. 78(517–525 (2015). https://www.sciencedirect.com/science/article/pii/S0300944014002008

  57. M. Sansotera, W. Navarrini, G. Resnati, P. Metrangolo, A. Famulari, C.L. Bianchi, P.A. Guarda, Preparation and characterization of superhydrophobic conductive fluorinated carbon blacks.Carbon 48(15), 4382–4390 (2010). https://www.sciencedirect.com/science/article/pii/S0008622310005567

  58. F.C. Lee, M.S. Ismail, D.B. Ingham, K.J. Hughes, L. Ma, S.M. Lyth, M. Pourkashanian, Alternative architectures and materials for PEMFC gas diffusion layers: A review and outlook.Renewable and Sustainable Energy Reviews 166(112640 (2022). https://www.sciencedirect.com/science/article/pii/S1364032122005330

  59. M. Sansotera, W. Navarrini, M. Gola, G. Dotelli, P.G. Stampino, C.L. Bianchi, Conductivity and superhydrophobic effect on PFPE-modified porous carbonaceous materials.Int. J. Hydrogen Energy 37(7), 6277–6284 (2012). https://www.sciencedirect.com/science/article/pii/S0360319911017010

  60. P.G. Stampino, D. Molina, L. Omati, S. Turri, M. Levi, C. Cristiani, G. Dotelli, Surface treatments with perfluoropolyether derivatives for the hydrophobization of gas diffusion layers for PEM fuel cells.J. Power Sources 196(18), 7645–7648 (2011). https://www.sciencedirect.com/science/article/pii/S0378775311008792

  61. P. Gallo Stampino, S. Latorrata, D. Molina, S. Turri, M. Levi, G. Dotelli, Investigation of hydrophobic treatments with perfluoropolyether derivatives of gas diffusion layers by electrochemical impedance spectroscopy in PEM-FC.Solid State Ionics 216(100–104 (2012). https://www.sciencedirect.com/science/article/pii/S0167273812002020

  62. P. Fracas, P. Grassini, G. Dotelli, P. Gallo Stampino, D. Brivio, Electrical Characterization of GDL Materials for Polymer Fuel Cells (PEMFC). ECS Transact. 12(1), 51 (2008)

    Article  CAS  Google Scholar 

  63. P. Gallo Stampino, R. Balzarotti, C. Cristiani, G. Dotelli, M. Guilizzoni, S. Latorrata, Effect of Different Hydrophobic Agents onto the Surface of Gas Diffusion Layers for PEM-FC 32, 1603–1608 (2013). https://doi.org/10.3303/CET1332268

    Google Scholar 

  64. M. Gola, M. Sansotera, W. Navarrini, C.L. Bianchi, P. Gallo Stampino, S. Latorrata, G. Dotelli, Perfluoropolyether-functionalized gas diffusion layers for proton exchange membrane fuel cells.J. Power Sources 258(351–355 (2014). https://www.sciencedirect.com/science/article/pii/S0378775314002080

  65. S. Latorrata, P. Gallo Stampino, C. Cristiani, G. Dotelli, Novel superhydrophobic microporous layers for enhanced performance and efficient water management in PEM fuel cells.Int. J. Hydrogen Energy 39(10), 5350–5357 (2014). https://www.sciencedirect.com/science/article/pii/S0360319913031911

  66. R. Balzarotti, S. Latorrata, P.G. Stampino, C. Cristiani, G. Dotelli, Development and Characterization of Non-Conventional Micro-Porous Layers for PEM Fuel Cells, in: Energies, 2015, pp. 7070–7083.

  67. S. Latorrata, M. Sansotera, M. Gola, P.G. Stampino, W. Navarrini, G. Dotelli, Innovative Perfluoropolyether-Functionalized Gas Diffusion Layers with Enhanced Performance in Polymer Electrolyte Membrane Fuel Cells. Fuel Cells 20(2), 166–175 (2020). https://doi.org/10.1002/fuce.201900169

    Article  CAS  Google Scholar 

  68. R. Balzarotti, S. Latorrata, M. Mariani, P. Gallo Stampino, G. Dotelli, Optimization of Perfluoropolyether-Based Gas Diffusion Media Preparation for PEM Fuel Cells. Energies 13(7), 1831 (2020). https://doi.org/10.3390/en13071831

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Technology Innovation Program (or Industrial Strategic Technology Development Program) (20016070) funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea). This work was also supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20224000000320). This work was supported by the KENTECH Research Grant funded by the Korea Institute of Energy Technology, Republic of Korea (KRG2022-01-016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyunjung Lee, Tae-Hoon Kim or Uk Sim.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanmugapriya, S., Kim, M.G., Im, S. et al. Recent research trends in perfluoropolyether for energy device applications: a mini review. J. Korean Ceram. Soc. 61, 1–14 (2024). https://doi.org/10.1007/s43207-023-00331-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-023-00331-3

Keywords

Navigation