Skip to main content
Log in

Interrelationships Between miR-34a and FSH in the Control of Porcine Ovarian Cell Functions

  • Reproductive Biology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Our study aimed to elucidate the effect of miR-34a mimics and miR-34a inhibitor and their combination on basic functions of ovarian cells cultured with and without FSH, and effect of FSH on expression of endogenous miR-34a. Viability, proliferation, proportion of proliferative active cells, apoptosis, proportion of DNA fragmented cells, accumulation of FSHR, steroid hormones, IGF-I, oxytocin, and prostaglandin E2 release, and expression levels of miR-34a were analysed. MiR-34a mimics decreased proliferation, apoptosis, testosterone, and estradiol output, stimulated release of progesterone, IGF-I, oxytocin, and occurrence of FSHR. MiR-34a inhibitor had an opposite effect and prevented effects of miR-34a mimics. FSH promoted expression of miR-34a, viability, proliferation, steroid hormones, IGF-I, oxytocin, and prostaglandin E2 output, and reduced apoptosis. Furthermore, miR-34a mimics supported effect of FSH on viability, apoptosis, progesterone, and IGF-I and inverted FSH action on proliferation, testosterone, and estradiol output. Our observations suggest that miR-34a can be involved in control of basic ovarian functions and that miR-34a and FSH are synergists in their actions on ovarian cell functions. Ability of FSH to promote miR-34a expression and ability of miR-34a mimics to increase occurrence of FSHR and to modify FSH effects suggest the existence of self-stimulating FSH-miR-34a axis, and that miR-34a can mediate actions of FSH on ovarian cells.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

Code Availability

Not applicable.

References

  1. O’Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol. 2018;9:402. https://doi.org/10.3389/fendo.2018.00402.

    Article  CAS  Google Scholar 

  2. Salas-Huetos A, James ER, Aston KI, Jenkins TG, Carrell DT, Yeste M. The expression of miRNAs in human ovaries, oocytes, extracellular vesicles, and early embryos: a systematic review. Cells. 2019;8(12):1564. https://doi.org/10.3390/cells8121564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tu J, Cheung AH, Chan CL, Chan WY. The role of microRNAs in ovarian granulosa cells in health and disease. Front Endocrinol. 2019;10:174. https://doi.org/10.3389/fendo.2019.00174.

    Article  Google Scholar 

  4. Alshamrani AA. Roles of microRNAs in ovarian cancer tumorigenesis: two decades later, what have we learned? Front Oncol. 2020;10:1084. https://doi.org/10.3389/fonc.2020.01084.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Reza A, Choi YJ, Han SG, Song H, Park C, Hong K, Kim JH. Roles of microRNAs in mammalian reproduction: from the commitment of germ cells to peri-implantation embryos. Biol Rev Camb Philos Soc. 2019;94(2):415–38. https://doi.org/10.1111/brv.12459.

  6. Salilew-Wondim D, Gebremedhn S, Hoelker M, Tholen E, Hailay T, Tesfaye D. The role of microRNAs in mammalian fertility: from gametogenesis to embryo implantation. Int J Mol Sci. 2020;21(2):585. https://doi.org/10.3390/ijms21020585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Maalouf SW, Liu WS, Pate JL. MicroRNA in ovarian function. Cell Tissue Res. 2016;363(1):7–18. https://doi.org/10.1007/s00441-015-2307-4.

    Article  CAS  PubMed  Google Scholar 

  8. Gecaj RM, Schanzenbach CI, Kirchner B, Pfaffl MW, Riedmaier I, Tweedie-Cullen RY, Berisha B. The dynamics of microRNA transcriptome in bovine corpus luteum during its formation, function, and regression. Front Genet. 2017;8:213. https://doi.org/10.3389/fgene.2017.00213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Toms D, Pan B, Li J. Endocrine regulation in the ovary by microRNA during the estrous cycle. Front Endocrinol. 2018;8:378. https://doi.org/10.3389/fendo.2017.00378.

    Article  Google Scholar 

  10. Azhar S, Dong D, Shen WJ, Hu Z, Kraemer FB. The role of miRNAs in regulating adrenal and gonadal steroidogenesis. J Molecul Endocrinol. 2020;64(1):R21–43. https://doi.org/10.1530/JME-19-0105.

    Article  CAS  Google Scholar 

  11. Zhang L, Liao Y, Tang L. MicroRNA-34 family: a potential tumor suppressor and therapeutic candidate in cancer. J Experiment Clin Cancer Res: CR. 2019;38(1):53. https://doi.org/10.1186/s13046-019-1059-5.

    Article  Google Scholar 

  12. Li R, Shi X, Ling F, Wang C, Liu J, Wang W, Li M. MiR-34a suppresses ovarian cancer proliferation and motility by targeting AXL. Tumour Biol: J Int Soc Oncod Biol Med. 2015;36(9):7277–83. https://doi.org/10.1007/s13277-015-3445-8.

    Article  CAS  Google Scholar 

  13. Ding N, Wu H, Tao T, Peng E. NEAT1 regulates cell proliferation and apoptosis of ovarian cancer by miR-34a-5p/BCL2. Onco Targets Ther. 2017;10:4905–15. https://doi.org/10.2147/OTT.S142446.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Slabáková E, Culig Z, Remšík J, Souček K. Alternative mechanisms of miR-34a regulation in cancer. Cell Death Dis. 2017;8(10): e3100. https://doi.org/10.1038/cddis.2017.495.

  15. Lv T, Song K, Zhang L, Li W, Chen Y, Diao Y, Yao Q, Liu P. miRNA-34a decreases ovarian cancer cell proliferation and chemoresistance by targeting HDAC1. Biochem Cell Biol. 2018;96(5):663–671

  16. Welponer H, Tsibulak I, Wieser V, Degasper C, Shivalingaiah G, Wenzel S, Sprung S, Marth C, Hackl H, Fiegl H, Zeimet AG. The miR-34 family and its clinical significance in ovarian cancer. J Cancer. 2020;11(6):1446–56. https://doi.org/10.7150/jca.33831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tu F, Pan ZX, Yao Y, Liu HL, Liu SR, Xie Z, Li QF. miR-34a targets the inhibin beta B gene, promoting granulosa cell apoptosis in the porcine ovary. Gen Mol Res: GMR. 2014;13(2):2504–12. https://doi.org/10.4238/2014.January.14.6.

  18. Sirotkin AV, Lauková M, Ovcharenko D, Brenaut P, Mlyncek M. Identification of microRNAs controlling human ovarian cell proliferation and apoptosis. J Cell Physiol. 2010;223(1):49–56. https://doi.org/10.1002/jcp.21999.

    Article  CAS  PubMed  Google Scholar 

  19. Sirotkin AV, Ovcharenko D, Grossmann R, Lauková M, Mlyncek M. Identification of microRNAs controlling human ovarian cell steroidogenesis via a genome-scale screen. J Cell Physiol. 2009;219(2):415–20. https://doi.org/10.1002/jcp.21689.

    Article  CAS  PubMed  Google Scholar 

  20. Sirotkin AV. Regulators of ovarian functions. 2014;New York: Nova Publishers Inc.

  21. Yin M, Wang X, Yao G, Lü M, Liang M, Sun Y, Sun F. Transactivation of micrornA-320 by microRNA-383 regulates granulosa cell functions by targeting E2F1 and SF-1 proteins. J Biol Chem. 2014;289(26):18239–57. https://doi.org/10.1074/jbc.M113.546044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang L, Zhang X, Zhang X, Lu Y, Li L, Cui S. MiRNA-143 mediates the proliferative signaling pathway of FSH and regulates estradiol production. J Endocrinol. 2017;234(1):1–14. https://doi.org/10.1530/JOE-16-0488.

    Article  CAS  PubMed  Google Scholar 

  23. Shukla A, Dahiya S, Onteru SK, Singh D. Differentially expressed miRNA-210 during follicular-luteal transition regulates pre-ovulatory granulosa cell function targeting HRas and EFNA3. J Cell Biochem. 2018;119(10):7934–43. https://doi.org/10.1002/jcb.26508.

    Article  CAS  PubMed  Google Scholar 

  24. Yao N, Yang BQ, Liu Y, Tan XY, Lu CL, Yuan XH, Ma X. Follicle-stimulating hormone regulation of microRNA expression on progesterone production in cultured rat granulosa cells. Endocrine. 2010;38(2):158–66. https://doi.org/10.1007/s12020-010-9345-1.

    Article  CAS  PubMed  Google Scholar 

  25. Noferesti SS, Sohel MM, Hoelker M, Salilew-Wondim D, Tholen E, Looft C, Rings F, Neuhoff C, Schellander K, Tesfaye D. Controlled ovarian hyperstimulation induced changes in the expression of circulatory miRNA in bovine follicular fluid and blood plasma. J Ovar Res. 2015;8:81. https://doi.org/10.1186/s13048-015-0208-5.

    Article  CAS  Google Scholar 

  26. Yuan H, Lu J, Xiao SY, Han XY, Song XT, Qi MY, Liu GS, Yang CX, Yao YC. miRNA expression analysis of the sheep follicle during the prerecruitment, dominant, and mature stages of development under FSH stimulation. Theriogenology. 2022;181:161–9. https://doi.org/10.1016/j.theriogenology.2022.01.001.

    Article  CAS  PubMed  Google Scholar 

  27. Jiajie T, Yanzhou Y, Hoi-Hung AC, Zi-Jiang C, Wai-Yee C. Conserved miR-10 family represses proliferation and induces apoptosis in ovarian granulosa cells. Sci Rep. 2017;7:41304. https://doi.org/10.1038/srep41304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Du X, Li Q, Pan Z, Li Q. Androgen receptor and miRNA-126* axis controls follicle-stimulating hormone receptor expression in porcine ovarian granulosa cells. Reproduction. 2016;152(2):161–9. https://doi.org/10.1530/REP-15-0517.

    Article  CAS  PubMed  Google Scholar 

  29. Du X, Zhang L, Li X, Pan Z, Liu H, Li Q. TGF-β signaling controls FSHR signaling-reduced ovarian granulosa cell apoptosis through the SMAD4/miR-143 axis. Cell Death Dis. 2016;7(11):e2476. https://doi.org/10.1038/cddis.2016.379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gao S, Zhao J, Xu Q, Guo Y, Liu M, Zhang C, Schinckel AP, Zhou B. MiR-31 targets HSD17B14 and FSHR, and miR-20b targets HSD17B14 to affect apoptosis and steroid hormone metabolism of porcine ovarian granulosa cells. Theriogenology. 2022;180:94–102. https://doi.org/10.1016/j.theriogenology.2021.12.014.

    Article  CAS  PubMed  Google Scholar 

  31. Fabová Z, Loncová B, Mlynček M, Sirotkin AV. Kisspeptin as autocrine/paracrine regulator of human ovarian cell functions: possible interrelationships with FSH and its receptor. Reprod Biol. 2021;22(1):100580. https://doi.org/10.1016/j.repbio.2021.100580.

  32. Sirotkin AV, Pelleova B, Fabova Z, Makovicky P, Alwasel S, Halim Harrath A. Rutin directly affects stimulatory action of FSH on the ovarian cell. PharmaNutrition. 2021;15:100247. https://doi.org/10.1016/j.phanu.2020.100247.

    Article  Google Scholar 

  33. Strober W. Trypan blue exclusion test of cell viability. Current Prot Immunol. 2001;Appendix 3. https://doi.org/10.1002/0471142735.ima03bs21

  34. Berridge MV, Herst PM, Tan AS. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annual Rev. 2005;11:127–52. https://doi.org/10.1016/S1387-2656(05)11004-7.

    Article  CAS  Google Scholar 

  35. Gaumer S, Guénal I, Brun S, Théodore L, Mignotte B. Bcl-2 and Bax mammalian regulators of apoptosis are functional in Drosophila. Cell Death Different. 2000;7(9):804–14. https://doi.org/10.1038/sj.cdd.4400714.

    Article  CAS  Google Scholar 

  36. Osborn M, Brandfass S. Immunocytochemistry of frozen and of paraffin tissue sections. In Celis JE (ed), Cell Biology. 2006;563–569. https://doi.org/10.1016/B978-012164730-8/50069-1

  37. Nygard AB, Jørgensen CB, Cirera S, Fredholm M. Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR. BMC Molecular Biol. 2007;8:67. https://doi.org/10.1186/1471-2199-8-67.

    Article  CAS  Google Scholar 

  38. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45. https://doi.org/10.1093/nar/29.9.e45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods (San Diego, Calif.). 2001;25(4):402–408. https://doi.org/10.1006/meth.2001.1262

  40. Rooda I, Hensen K, Kaselt B, Kasvandik S, Pook M, Kurg A, Salumets A, Velthut-Meikas A. Target prediction and validation of microRNAs expressed from FSHR and aromatase genes in human ovarian granulosa cells. Sci Rep. 2020;10(1):2300. https://doi.org/10.1038/s41598-020-59186-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shiomi Y, Nishitani H. Control of genome integrity by RFC complexes; conductors of PCNA loading onto and unloading from chromatin during DNA replication. Genes. 2017;8(2):52. https://doi.org/10.3390/genes8020052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nakayama Y, Yamaguchi N. Role of cyclin B1 levels in DNA damage and DNA damage-induced senescence. Int Rev Cell Mol Biol. 2013;305:303–37. https://doi.org/10.1016/B978-0-12-407695-2.00007-X.

    Article  CAS  PubMed  Google Scholar 

  43. Lin X, Guan H, Huang Z, Liu J, Li H, Wei G, Cao X, Li Y. Downregulation of Bcl-2 expression by miR-34a mediates palmitate-induced Min6 cells apoptosis. J Diabetes Res. 2014;2014:258695. https://doi.org/10.1155/2014/258695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Peña-Blanco A, García-Sáez AJ. Bax, Bak and beyond—mitochondrial performance in apoptosis. FEBS J. 2018;285(3):416–31. https://doi.org/10.1111/febs.14186.

  45. An LS, Yuan XH, Hu Y, Shi ZY, Liu XQ, Qin L, Wu GQ, Han W, Wang YQ, Ma X. Progesterone production requires activation of caspase-3 in preovulatory granulosa cells in a serum starvation model. Steroids. 2012;77(13):1477–82. https://doi.org/10.1016/j.steroids.2012.07.011.

    Article  CAS  PubMed  Google Scholar 

  46. Mirzayans R, Murray D. Do TUNEL and other apoptosis assays detect cell death in preclinical studies? Int J Mol Sci. 2020;21(23):9090. https://doi.org/10.3390/ijms21239090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hockenbery DM. Targeting mitochondria for cancer therapy. Environ Molecul Mutagen. 2010;51(5):476–89. https://doi.org/10.1002/em.20552.

    Article  CAS  Google Scholar 

  48. Das N, Kumar TR. Molecular regulation of follicle-stimulating hormone synthesis, secretion and action. J Molecul Endocrinol. 2018;60(3):R131–55. https://doi.org/10.1530/JME-17-0308.

    Article  CAS  Google Scholar 

  49. Cohen A, Burgos-Aceves MA, Smith Y. Global microRNA downregulation: all roads lead to estrogen. J Xiangya Med. 2017;2(7). https://jxym.amegroups.com/article/view/4049.

Download references

Funding

This research was financially supported by the Slovak Research and Development Agency (APVV), the project APVV-15-0296 and the Scientific Grant Agency of the Ministry of Education, Science, and Sport of Slovak Republic (VEGA), the projects VEGA 13-ENV1321-02 and 1/0680/22.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuzana Fabová.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fabová, Z., Loncová, B., Bauer, M. et al. Interrelationships Between miR-34a and FSH in the Control of Porcine Ovarian Cell Functions. Reprod. Sci. 30, 1789–1807 (2023). https://doi.org/10.1007/s43032-022-01127-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-022-01127-2

Keywords

Navigation