Skip to main content
Log in

On the antimaximum principle for the p-Laplacian and its sublinear perturbations

  • Original Research Article
  • Published:
Partial Differential Equations and Applications Aims and scope Submit manuscript

Abstract

We investigate qualitative properties of weak solutions of the Dirichlet problem for the equation \(-\Delta _p u = \lambda \,m(x)|u|^{p-2}u+ \eta \,a(x)|u|^{q-2}u+ f(x)\) in a bounded domain \(\Omega \subset \mathbb {R}^N\), where \(q<p\). Under certain regularity and qualitative assumptions on the weights ma and the source function f, we identify ranges of the parameters \(\lambda \) and \(\eta \) for which solutions satisfy maximum and antimaximum principles in weak and strong forms. Some of our results, especially on the validity of the antimaximum principle under low regularity assumptions, are new for the unperturbed problem with \(\eta =0\), and among them there are results providing new information even in the linear case \(p=2\). In particular, we show that for any \(p>1\) solutions of the unperturbed problem satisfy the antimaximum principle in a right neighborhood of the first eigenvalue of the p-Laplacian provided \(m,f \in L^\gamma (\Omega )\) with \(\gamma >N\). For completeness, we also investigate the existence of solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Abdellaoui, B., Peral, I.: Existence and nonexistence results for quasilinear elliptic equations involving the \(p\)-Laplacian with a critical potential. Ann. Mat. 182(3), 247–270 (2003). https://doi.org/10.1007/s10231-002-0064-y

    Article  MathSciNet  MATH  Google Scholar 

  2. Agarwal, R.P., Perera, K., O’Regan, D.: A variational approach to singular quasilinear elliptic problems with sign changing nonlinearities. Appl. Anal. 85(10), 1201–1206 (2006). https://doi.org/10.1080/00036810500474655

    Article  MathSciNet  MATH  Google Scholar 

  3. Allegretto, W., Huang, Y.: A Picone’s identity for the \(p\)-Laplacian and applications. Nonlinear Anal. Theory Methods Appl. 32(7), 819–830 (1998). https://doi.org/10.1016/S0362-546X(97)00530-0

    Article  MathSciNet  MATH  Google Scholar 

  4. Arcoya, D., Gámez, J.L.: Bifurcation theory and related problems: anti-maximum principle and resonance. Commun. Partial Differ. Equ. 26(9–10), 1879–1911 (2001). https://doi.org/10.1081/PDE-100107462

    Article  MathSciNet  MATH  Google Scholar 

  5. Arias, M., Campos, J., Gossez, J.P.: On the antimaximum principle and the Fučik spectrum for the Neumann \(p\)-Laplacian. Differ. Integr. Equ. 13(1–3), 217–226 (2000)

  6. Bandle, C., Pozio, M.A., Tesei, A.: The asymptotic behavior of the solutions of degenerate parabolic equations. Trans. Am. Math. Soc. 303(2), 487–501 (1987). https://doi.org/10.1090/S0002-9947-1987-0902780-3

    Article  MathSciNet  MATH  Google Scholar 

  7. Beygmohammadi, M., Sweers, G.: Pointwise behaviour of the solution of the Poisson problem near conical points. Nonlinear Anal. Theory Methods Appl. 121, 173–187 (2015). https://doi.org/10.1016/j.na.2014.11.013

    Article  MathSciNet  MATH  Google Scholar 

  8. Birindelli, I.: Hopf’s lemma and anti-maximum principle in general domains. J. Differ. Equ. 119(2), 450–472 (1995). https://doi.org/10.1006/jdeq.1995.1098

    Article  MathSciNet  MATH  Google Scholar 

  9. Bobkov, V., Tanaka, M.: On the Fredholm-type theorems and sign properties of solutions for \((p,q)\)-Laplace equations with two parameters. Ann. Mat. Pura Appl. (1923-) 198(5), 1651–1673 (2019). https://doi.org/10.1007/s10231-019-00836-x

    Article  MathSciNet  MATH  Google Scholar 

  10. Bobkov, V., Tanaka, M.: Generalized Picone inequalities and their applications to \((p, q)\)-Laplace equations. Open Math. 18(1), 1030–1044 (2020). https://doi.org/10.1515/math-2020-0065

    Article  MathSciNet  MATH  Google Scholar 

  11. Bobkov, V., Tanaka, M.: On subhomogeneous indefinite \(p\)-Laplace equations in supercritical spectral interval. Calc. Var. Partial Differ. Equ. 62(1), 22 (2023). https://doi.org/10.1007/s00526-022-02322-4

  12. Bobkov, V., Drábek, P., Ilyasov, Y.: Estimates on the spectral interval of validity of the anti-maximum principle. J. Differ. Equ. 269(4), 2956–2976 (2020). https://doi.org/10.1016/j.jde.2020.02.020

    Article  MathSciNet  MATH  Google Scholar 

  13. Brown, K.J.: The Nehari manifold for a semilinear elliptic equation involving a sublinear term. Calc. Var. Partial. Differ. Equ. 22(4), 483–494 (2004). https://doi.org/10.1007/s00526-004-0289-2

    Article  MathSciNet  MATH  Google Scholar 

  14. Clément, P., Peletier, L.A.: An anti-maximum principle for second-order elliptic operators. J. Differ. Equ. 34(2), 218–229 (1979). https://doi.org/10.1016/0022-0396(79)90006-8

    Article  MathSciNet  MATH  Google Scholar 

  15. Cuesta, M.: Eigenvalue problems for the \(p\)-Laplacian with indefinite weights. Electron. J. Differ. Equ. 33, 1–9 (2001). https://ejde.math.txstate.edu/Volumes/2001/33/cuesta.pdf

  16. Cuesta, M., De Figueiredo, D., Gossez, J.P.: The beginning of the Fučik spectrum for the \(p\)-Laplacian. J. Differ. Equ. 159(1), 212–238 (1999). https://doi.org/10.1006/jdeq.1999.3645

    Article  MATH  Google Scholar 

  17. Díaz, J.I.: Nonlinear Partial Differential Equations and Free Boundaries. Vol. 1: Elliptic Equations. Pitman Advanced Publishing Program, Boston (1985)

    Google Scholar 

  18. Díaz, J.I., Hernández, J., Il’yasov, Y.: On the existence of positive solutions and solutions with compact support for a spectral nonlinear elliptic problem with strong absorption. Nonlinear Anal. Theory Methods Appl. 119, 484–500 (2015). https://doi.org/10.1016/j.na.2014.11.019

    Article  MathSciNet  MATH  Google Scholar 

  19. DiBenedetto, E.: \(C^{1+\alpha }\) local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. Theory Methods Appl. 7(8), 827–850 (1983). https://doi.org/10.1016/0362-546X(83)90061-5

    Article  MATH  Google Scholar 

  20. Dinca, G., Jebelean, P., Mawhin, J.: Variational and topological methods for Dirichlet problems with \(p\)-Laplacian. Portugal. Math. 58(3), 339–378 (2001). https://eudml.org/doc/49321

  21. Drábek, P.: The \(p\)-Laplacian-mascot of nonlinear analysis. Acta Math. Univ. Comenian. 76(1), 85–98 (2007). https://www.emis.de/journals/AMUC/_vol-76/_no_1/_drabek/drabek.pdf

  22. Drábek, P., Robinson, S.B.: Resonance problems for the \(p\)-Laplacian. J. Funct. Anal. 169(1), 189–200 (1999). https://doi.org/10.1006/jfan.1999.3501

    Article  MathSciNet  MATH  Google Scholar 

  23. Dugundji, J.: An extension of Tietze’s theorem. Pac. J. Math. 1(3), 353–367 (1951)

  24. Fleckinger, J., Gossez, J.-P., Takáč, P., de Thélin, F. Existence, nonexistence et principe de l’antimaximum pour le \(p\)-laplacien. Comptes Rend. l’Acad. Sci. Sér. 1 Math. 321(6), 731–734 (1995). http://gallica.bnf.fr/ark:/12148/bpt6k62037127/f81

  25. Fleckinger, J., Hernández, J., de Thélin, F.: Estimate of the validity interval for the Antimaximum Principle and application to a non-cooperative system. Rostock. Math. Kolloq. 69, 19-32. (2014/15). http://ftp.math.uni-rostock.de/pub/romako/heft69/Fleckinger69.pdf

  26. Fučík, S., Nečas, J., Souček, J., Souček, V.: Spectral Analysis of Nonlinear Operators, vol. 346. Springer, Berlin (2006). https://doi.org/10.1007/BFb0059360

    Book  MATH  Google Scholar 

  27. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1977). https://doi.org/10.1007/978-3-642-61798-0

    Book  MATH  Google Scholar 

  28. Godoy, T., Gossez, J.P., Paczka, S.: On the antimaximum principle for the \(p\)-Laplacian with indefinite weight. Nonlinear Anal. Theory Methods Appl. 51(3), 449–467 (2002). https://doi.org/10.1016/S0362-546X(01)00839-2

    Article  MathSciNet  MATH  Google Scholar 

  29. Godoy, T., Gossez, J.P., Paczka, S.R.: A minimax formula for the principal eigenvalues of Dirichlet problems and its applications. Electron. J. Differ. Equ. Conf. 16, 137–154 (2007). https://ejde.math.txstate.edu/conf-proc/16/g1/godoy.pdf

  30. Heinonen, J., Kipelainen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Courier Dover Publications, Mineola (1993)

    MATH  Google Scholar 

  31. Hess, P.: An anti-maximum principle for linear elliptic equations with an indefinite weight function. J. Differ. Equ. 41(3), 369–374 (1981). https://doi.org/10.1016/0022-0396(81)90044-9

    Article  MathSciNet  MATH  Google Scholar 

  32. Hess, P., Kato, T.: On some linear and nonlinear eigenvalue problems with an indefinite weight function. Comm. Partial Differ. Equ. 5(10), 999–1030 (1980). https://doi.org/10.1080/03605308008820162

    Article  MathSciNet  MATH  Google Scholar 

  33. Il’yasov, Y., Runst, T.: An anti-maximum principle for degenerate elliptic boundary value problems with indefinite weights. Complex Var. Ellipt. Equ. 55(8–10), 897–910 (2010). https://doi.org/10.1080/17476930903276043

    Article  MathSciNet  MATH  Google Scholar 

  34. Kajikiya, R.: Symmetric mountain pass lemma and sublinear elliptic equations. J. Differ. Equ. 260(3), 2587–2610 (2016). https://doi.org/10.1016/j.jde.2015.10.016

    Article  MathSciNet  MATH  Google Scholar 

  35. Kaufmann, U., Quoirin, H.R., Umezu, K.: A curve of positive solutions for an indefinite sublinear Dirichlet problem. Discrete Contin. Dyn. Syst. 40(2), 617–645 (2020). https://doi.org/10.3934/dcds.2020063

    Article  MathSciNet  MATH  Google Scholar 

  36. Kaufmann, U., Quoirin, H.R., Umezu, K.: Past and recent contributions to indefinite sublinear elliptic problems. Rend. dell’Istit. Mat. dell’Univ. Trieste 52, 217–241 (2020). https://doi.org/10.13137/2464-8728/30913

    Article  MathSciNet  MATH  Google Scholar 

  37. Kaufmann, U., Quoirin, H.R., Umezu, K.: Uniqueness and positivity issues in a quasilinear indefinite problem. Calc. Var. Partial. Differ. Equ. 60(5), 187 (2021). https://doi.org/10.1007/s00526-021-02057-8

    Article  MathSciNet  MATH  Google Scholar 

  38. Li, Y., Liu, Z., Zhao, C.: Nodal solutions of perturbed elliptic problem. Topol. Methods Nonlinear Anal. 32(1), 49–68 (2008)

  39. Lieberman, G.M.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. Theory Methods Appl. 12(11), 1203–1219 (1988). https://doi.org/10.1016/0362-546X(88)90053-3

    Article  MathSciNet  MATH  Google Scholar 

  40. Maggi, F.: Sets of Finite Perimeter and Geometric Variational Problems. Cambridge University Press, Cambridge (2012). https://doi.org/10.1017/CBO9781139108133

    Book  MATH  Google Scholar 

  41. Mawhin, J.: Partial differential equations also have principles: maximum and antimaximum. Contemp. Math. 540, 1–13 (2011). https://doi.org/10.1090/conm/540

    Article  MathSciNet  MATH  Google Scholar 

  42. Mikayelyan, H., Shahgholian, H.: Hopf’s lemma for a class of singular/degenerate PDE-s. Ann. Acad. Sci. Fenn. Math. 40(1), 475–484 (2015). https://doi.org/10.5186/aasfm.2015.4033

    Article  MathSciNet  MATH  Google Scholar 

  43. Miyajima, S., Motreanu, D., Tanaka, M.: Multiple existence results of solutions for the Neumann problems via super-and sub-solutions. J. Funct. Anal. 262(4), 1921–1953 (2012). https://doi.org/10.1016/j.jfa.2011.11.028

    Article  MathSciNet  MATH  Google Scholar 

  44. Moroz, V.: On the Morse critical groups for indefinite sublinear elliptic problems. Nonlinear Anal. Theory Methods Appl. 52(5), 1441–1453 (2003). https://doi.org/10.1016/S0362-546X(02)00174-8

    Article  MathSciNet  MATH  Google Scholar 

  45. Noussair, E.S., Cao, D.: Multiplicity results for an inhomogeneous nonlinear elliptic problem. Differ. Integr. Equ. 11(1), 47–59 (1998)

  46. Perera, K., Zhang, Z.: Multiple positive solutions of singular \(p\)-Laplacian problems by variational methods. Bound. Value Probl. 2005(3), 377–382 (2005). https://doi.org/10.1155/BVP.2005.377

    Article  MathSciNet  MATH  Google Scholar 

  47. Pinchover, Y.: Anti-maximum principles for indefinite-weight elliptic problems. Commun. Partial Differ. Equ. 26(9–10), 1861–1877 (2001). https://doi.org/10.1081/PDE-100107461

    Article  MathSciNet  MATH  Google Scholar 

  48. Pucci, P., Serrin, J.B.: The Maximum Principle. Springer, Berlin (2007). https://doi.org/10.1007/978-3-7643-8145-5

    Book  MATH  Google Scholar 

  49. Pyatkov, S.G.: Operator Theory: Nonclassical Problems, vol. 33. De Gruyter, Berlin (2013). https://doi.org/10.1515/9783110900163

    Book  MATH  Google Scholar 

  50. Quoirin, H.R., Silva, K.: Local minimizers for a class of functionals over the Nehari set. J. Math. Anal. Appl. 519(2), 126851 (2023). https://doi.org/10.1016/j.jmaa.2022.126851

  51. Schmidt, T.: Strict interior approximation of sets of finite perimeter and functions of bounded variation. Proc. Am. Math. Soc. 143(5), 2069–2084 (2015). https://doi.org/10.1090/S0002-9939-2014-12381-1

    Article  MathSciNet  MATH  Google Scholar 

  52. Sweers, G.: \(L^n\) is sharp for the anti-maximum principle. J. Differ. Equ. 134(1), 148–153 (1997). https://doi.org/10.1006/jdeq.1996.3211

    Article  MathSciNet  MATH  Google Scholar 

  53. Takáč, P.: Nonlinear spectral problems for degenerate elliptic operators. In: Handbook of Differential Equations: Stationary Partial Differential Equations, 1, Chapter 6, pp. 385–489 (2004). https://doi.org/10.1016/S1874-5733(04)80008-1

  54. Takáč, P.: Variational methods and linearization tools towards the spectral analysis of the \(p\)-Laplacian, especially for the Fredholm alternative. Electron. J. Differ. Equ. Conf. 18, 67–105 (2010). https://ejde.math.txstate.edu/conf-proc/18/t1/takac.pdf

  55. Tanaka, M.: Existence of a non-trivial solution for the \(p\)-Laplacian equation with Fučík type resonance at infinity. II. Nonlinear Anal. Theory Methods Appl. 71(7–8), 3018–3030 (2009). https://doi.org/10.1016/j.na.2009.01.186

    Article  MATH  Google Scholar 

  56. Tanaka, M.: Existence results for quasilinear elliptic equations with indefinite weight. Abstr. Appl. Anal. 2012, 568120 (2012). https://doi.org/10.1155/2012/568120

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Prof. Ky Ho for acquainting them with the works [2, 46] and for stimulating discussions. V. Bobkov was supported by RSF Grant Number 22-21-00580. M. Tanaka was supported by JSPS KAKENHI Grant Number JP 19K03591.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Bobkov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

This article is part of the section "Theory of PDEs" edited by Eduardo Teixeira.

Appendices

Regularity

We start with an \(L^\infty (\Omega )\)-bound for solutions of the problem (\(\mathcal {P}\)). In view of the Morrey lemma, it will be sufficient to investigate only the case \(N \ge p\). The proof uses the classical bootstrap argument and we present it sketchily for completeness.

Proposition A.1

Let \(N \ge p>1\). Assume that \(m, a, f \in L^\gamma (\Omega )\) for some \(\gamma >N/p\), and \(M_1 > 0\) is any constant such that \(\Vert m\Vert _\gamma , \Vert a\Vert _\gamma , \Vert f\Vert _\gamma \le M_1\). Let r be such that \(p\gamma ^\prime< r < p^*\), where \(\gamma ^\prime = \gamma /(\gamma -1)\) and \(p^*\) is defined in (3.1). Assume that \(|\lambda |, |\eta | \le M_2\) for some \(M_2 > 0\). Then there exists \(C=C(|\Omega |,M_1,M_2,p,q,\gamma ,r)>0\) such that any solution u of (\(\mathcal {P}\)) satisfies

$$\begin{aligned} \Vert u\Vert _\infty \le C \left( \,1+\Vert u\Vert _{r}\right) . \end{aligned}$$
(A.1)

Proof

Let \(C_*>0\) be the best constant of the embedding \(W_0^{1,p}(\Omega ) \hookrightarrow L^r(\Omega )\), and set \(M_0 =\max \{1,|\Omega |\}\). Let u be any solution of (\(\mathcal {P}\)) and denote, for brevity, \(v = u_+\). For any \(l>0\) and \(M>0\), we denote \(v_M = \min \{v,M\}\) and take \(v_M^{l+1} \in W_0^{1,p}(\Omega )\) as a test function for (\(\mathcal {P}\)). Concerning the left-hand side of (\(\mathcal {P}\)), we have

$$\begin{aligned} \int _\Omega&|\nabla u|^{p-2}\nabla u\nabla (v_M^{l+1})\,dx =(l+1)\int _\Omega v_M^l|\nabla v_M|^p\,dx =(l+1)\left( \frac{p}{p+l}\right) ^p\,\int _\Omega |\nabla (v_M^{1+l/p})|^p\,dx\nonumber \\&\ge (l+1)\left( \frac{p}{C_*(p+l)}\right) ^p \Vert v_M^{1+l/p}\Vert _{r}^p \ge \frac{1}{C_*^{p}(p+l)^p} \Vert v_M\Vert _{(p+l)r/p}^{p+l}. \end{aligned}$$
(A.2)

On the other hand, temporarily assuming that \(v\in L^{(p+l)\gamma ^\prime }(\Omega )\), we apply the Hölder inequality to estimate the right-hand side of (\(\mathcal {P}\)) from above by the following expressions:

$$\begin{aligned}&|\lambda |\Vert m\Vert _{\gamma }\Vert v\Vert _{(p+l)\gamma ^\prime }^{p+l} +|\eta |\Vert a\Vert _{\gamma }\Vert v\Vert _{(q+l)\gamma ^\prime }^{q+l} +\Vert f\Vert _{\gamma } \Vert v\Vert _{(1+l)\gamma ^\prime }^{1+l}\nonumber \\&\quad \le M_1 \Big (M_2 + M_2 M_0^\frac{(p-q)}{(p+l)\gamma ^\prime } + M_0^\frac{(p-1)}{(p+l)\gamma ^\prime } \Big ) \max \{1,\Vert v\Vert _{(p+l)\gamma ^\prime }^{p+l}\}\nonumber \\&\quad \le M_1 \Big (M_2 + M_2 M_0^\frac{(p-q)}{p\gamma ^\prime } + M_0^\frac{(p-1)}{p\gamma ^\prime } \Big ) \max \{1,\Vert v\Vert _{(p+l)\gamma ^\prime }^{p+l}\}. \end{aligned}$$
(A.3)

Consequently, if \(v\in L^{(p+l)\gamma ^\prime }(\Omega )\) for some \(l>0\), then we let \(M\rightarrow \infty \) and deduce from (A.2) and (A.3) that \(v\in L^{(p+l)r/p}(\Omega )\) and

$$\begin{aligned} \Vert v\Vert _{(p+l)r/p} \le \left( C(p+l)^p\right) ^{1/(p+l)}\, \max \{1,\Vert v\Vert _{(p+l)\gamma ^\prime }\}, \end{aligned}$$
(A.4)

where \(C\ge 1\) is a constant independent of \(l>0\) and v. Now we define a sequence \(\{l_m\}\) as follows:

$$\begin{aligned} (p+l_0)\gamma ^\prime =r\quad \textrm{and}\quad l_{m+1}=\frac{p+l_m}{P}-p, \quad \textrm{where}\quad P:=\frac{\,\gamma ^\prime p\,}{r}<1. \end{aligned}$$

In particular, we do have \(v\in L^{(p+l_0)\gamma ^\prime }(\Omega )\). Denoting \(d_m = (C(p+l_m)^p)^{1/(p+l_m)}\), we infer from (A.4) that

$$\begin{aligned} \Vert v\Vert _{(p+l_{m+1})\gamma ^\prime }\le d_m \max \{1,\Vert v\Vert _{(p+l_m)\gamma ^\prime }\} \le \max \{1,\Vert v\Vert _{(p+l_0)\gamma ^\prime }\}\prod _{k=0}^m d_k \end{aligned}$$
(A.5)

for every m. Let us show that \(\prod _{k=0}^\infty d_k\) is finite. We have

$$\begin{aligned} \log \prod _{k=0}^\infty d_k= \log C\,\sum _{k=0}^\infty \frac{1}{p+l_k}+ p\,\sum _{k=0}^\infty \frac{\log (p+l_k)}{p+l_k}. \end{aligned}$$
(A.6)

Noting that \(P=(p+l_k)/(p+l_{k+1})<1\), we deduce that \(l_k \rightarrow \infty \) and get

$$\begin{aligned} \frac{\log (p+l_{k+1})}{p+l_{k+1}}\, \frac{p+l_k}{\log (p+l_k)} =P\,\left( 1-\frac{\log P}{\log (p+l_k)} \right) \rightarrow P<1 \quad \text {as}~k\rightarrow \infty . \end{aligned}$$

Hence, the series in (A.6) are convergent, which completes the proof of the boundedness of v by letting \(m\rightarrow \infty \) in (A.5). Repeating the same procedure with \(v=-u_-\), we obtain the boundedness of \(u_-\) and hence of u in the form (A.1). \(\square \)

After we established the boundedness of solutions of (\(\mathcal {P}\)), we can consider the whole right-hand side of (\(\mathcal {P}\)) as a function which maps \(\Omega \) to \(\mathbb {R}\) and investigate the regularity of solutions of the corresponding Poisson problem in order to get the regularity of solutions of (\(\mathcal {P}\)). Namely, we consider the problem

$$\begin{aligned} \left\{ \begin{aligned} -\Delta _p u&= g(x){} & {} \text {in}\ \Omega , \\ u&=0{} & {} \text {on}\ \partial \Omega . \end{aligned} \right. \end{aligned}$$
(A.7)

The following result on the local Hölder regularity of the (unique) solution of (A.7) is well known (see, e.g., [48, Theorem 7.3.1]) and we omit the proof.

Proposition A.2

Let \(\Vert g\Vert _\gamma \le M\) for some \(M >0\), where \(\gamma >N/p\) if \(N\ge p\) and \(\gamma =1\) if \(N<p\). Then the solution \(u \in W_0^{1,p}(\Omega )\) of (A.7) satisfies \(u \in C(\Omega ) \cap L^\infty (\Omega )\). Moreover, there exists \(\beta = \beta (p,N,\gamma ) \in (0,1)\) such that for any compact subset \(K \subset \Omega \) there exists \(C = C(\Omega ,K,M,p,\gamma )>0\) such that \(\Vert u\Vert _{C^{0,\beta }(K)} \le C\).

Let us discuss a higher regularity of solutions of (A.7) under a higher integrability assumption on the source function g. The proof of the following result is inspired by [46, Proposition 2.1] (see also [2, Proposition 2.1] and compare with [19, Corollary]). We expand the approach of [46, Proposition 2.1] in order to provide more explicit dependence of the regularity of solutions of (A.7) on g, which is necessary for the proofs of our main results formulated under the assumptions (\(\mathcal {O}\)), \((\mathcal {M})\)\((\mathcal {A})\)\((\mathcal {F})\).

Proposition A.3

Let \(\Omega \) satisfy (\(\mathcal {O}\)). Let \(\Vert g\Vert _\gamma \le M\) for some \(M >0\) and \(\gamma >N\). Then there exist \(\beta = \beta (M,p,N,\gamma ) \in (0,1)\) and \(C = C(\Omega ,M,p,\gamma )>0\) such that the solution \(u \in W_0^{1,p}(\Omega )\) of (A.7) satisfies \(u \in C^{1,\beta }(\overline{\Omega })\) and \(\Vert u\Vert _{C^{1,\beta }(\overline{\Omega })} \le C\).

Proof

Throughout the proof, we denote by \(C>0\) a universal constant, for convenience. First, we consider the following problem for the linear Laplace operator:

$$\begin{aligned} \left\{ \begin{aligned} -\Delta v&= g(x){} & {} \text {in}\ \Omega , \\ v&=0{} & {} \text {on}\ \partial \Omega , \end{aligned} \right. \end{aligned}$$
(A.8)

where the function g is the same as in (A.7). Since \(\Omega \) is of class \(C^{1,1}\) and \(g \in L^\gamma (\Omega )\) with \(\gamma >N\), the problem (A.8) has a unique solution \(v \in W^{2,\gamma }(\Omega )\), see, e.g., [27, Theorem 9.15] (in fact, here \(\gamma >1\) is enough). Moreover, this solution has the following property, see, e.g., [27, Lemma 9.17]:

$$\begin{aligned} \Vert v\Vert _{W^{2,\gamma }(\Omega )} \le C \Vert g\Vert _\gamma , \end{aligned}$$

where C does not depend on v and g. Thanks to the regularity of \(\Omega \) and the assumption \(\gamma >N\), the embedding \(W^{2,\gamma }(\Omega ) \hookrightarrow C^{1,\kappa }(\overline{\Omega })\) is continuous with \(\kappa = 1-\frac{N}{\gamma } \in (0,1)\), see, e.g., [27, Theorem 7.26] (in fact, here \(C^{0,1}\)-regularity of \(\Omega \) is enough). Consequently,

$$\begin{aligned} \Vert v\Vert _{C^{1,\kappa }(\overline{\Omega })} \le C \Vert v\Vert _{W^{2,\gamma }(\Omega )} \le C \Vert g\Vert _\gamma \le C M, \end{aligned}$$

where C is independent of v. Recall, for convenience, that

$$\begin{aligned} \Vert v\Vert _{C^{1,\kappa }(\overline{\Omega })}:= \sup _{x \in \Omega } |v(x)| + \max _{i=1,\dots ,N}\sup _{x \in \Omega } |v'_{x_i}(x)| + \max _{i=1,\dots ,N}\sup _{x,y \in \Omega ,~x \ne y} \frac{|v'_{x_i}(x)-v'_{x_i}(y)|}{|x-y|^\kappa }. \end{aligned}$$

Denoting \(V(x) = \nabla v(x)\), we have

$$\begin{aligned} V \in C^{0,\kappa }(\overline{\Omega }; \mathbb {R}^N). \end{aligned}$$
(A.9)

Subtracting (A.8) from (A.7), we see that the solution u of (A.7) weakly solves the problem

$$\begin{aligned} \left\{ \begin{aligned} -\text {div}\left( |\nabla u|^{p-2} \nabla u - V(x)\right)&= 0{} & {} \text {in}\ \Omega , \\ u&=0{} & {} \text {on}\ \partial \Omega . \end{aligned} \right. \end{aligned}$$
(A.10)

Let us show that the regularity result [39, Theorem 1] is applicable to (A.10). Denote \(A(x,z) = |z|^{p-2} z - V(x)\) and \(a^{ij}(z) = \frac{\partial A^i(x,z)}{\partial z_j}\), \(z \in \mathbb {R}^N\). The matrix \((a^{ij}(z))\) is a symmetric \(N \times N\)-matrix corresponding to the linearization of the p-Laplacian and we have

$$\begin{aligned} (a^{ij}(z)) = |z|^{p-2} \left( I + (p-2) \frac{z \otimes z}{|z|^2}\right) , \quad z \in \mathbb {R}^N {\setminus } \{0\}, \end{aligned}$$

where \(z \otimes z:= (z_i z_j)\) is a matrix. We set \((a^{ij}(0))\) to be a zero matrix. It is not hard to see that

$$\begin{aligned} \min \{1,p-1\}|z|^{p-2} |\xi |^2 \leqslant \sum _{i,j=1}^N a^{ij}(z)\xi _i \xi _j \leqslant \max \{1,p-1\} |z|^{p-2} |\xi |^2 \end{aligned}$$

for any \(z,\xi \in \mathbb {R}^N\), see, e.g., [53, Section 5.1]. Thanks to (A.9), we have the following estimate for all \(x,y \in \overline{\Omega }\) and \(z \in \mathbb {R}^N\):

$$\begin{aligned} |A(x,z)-A(y,z)| = |V(x)-V(y)| \le C |x-y|^{\kappa }, \end{aligned}$$

where C depends on M but does not depend on v, x, y, z. We also mention that since \(\Omega \) satisfies (\(\mathcal {O}\)), \(\Omega \) automatically belongs to the class \(C^{1,\kappa }\).

Finally, we recall that the solution u of (A.7) is bounded. More precisely, in the case \(N \ge p\), Proposition A.1 gives the bound

$$\begin{aligned} \Vert u\Vert _\infty \le C\,(\,1+\Vert u\Vert _{r}), \end{aligned}$$
(A.11)

where \(p\gamma ^\prime< r < p^*\) and C does not depend on u, and a similar bound holds in the case \(N<p\) due to the Morrey lemma. Notice that since \(\gamma >N\), we have \(\gamma ' < p^*\). Since u satisfies \(\int _\Omega |\nabla u|^p \, dx = \int _\Omega g u \,dx\), we use the Hölder inequality and the continuity of the embedding \(W_0^{1,p}(\Omega ) \hookrightarrow L^{\gamma '}(\Omega )\) to deduce that

$$\begin{aligned} \Vert \nabla u\Vert _p^p \le \Vert g\Vert _\gamma \Vert u\Vert _{\gamma '} \le C \Vert g\Vert _\gamma \Vert \nabla u\Vert _{p}, \end{aligned}$$

which yields

$$\begin{aligned} \Vert u\Vert _{r} \le C \Vert \nabla u\Vert _p \le C \Vert g\Vert _\gamma ^\frac{1}{p-1} \le C M^\frac{1}{p-1}, \end{aligned}$$

where C does not depend on M and u. Combining this estimate with (A.11), we finally arrive at the bound \(\Vert u\Vert _\infty \le C\), where C is independent of u.

Thus, all the requirements of [39, Theorem 1] are satisfied, which guarantees that \(u \in C^{1,\beta }(\overline{\Omega })\), where \(\beta = \beta (M,p,N,\gamma ) \in (0,1)\) and \(\Vert u\Vert _{C^{1,\beta }(\overline{\Omega })} \le C(\Omega ,M,p,\gamma )\). \(\square \)

Weak form of the Picone inequality

In the proofs of Theorem 2.12 and Proposition 4.2 (and hence of Theorem 2.9 (ii)), we need to employ a version of the standard Picone inequality [3, Theorem 1.1] applicable to purely Sobolev functions, i.e., when no a priori information on the a.e.-differentiability is available. We start with the following auxiliary results.

Lemma B.1

Let \(\varphi \in W^{1,p}(\Omega ) \cap L^\infty (\Omega )\), \(u \in W^{1,p}(\Omega )\), and \(\varepsilon >0\). Then \(|\varphi |^p/(|u|+\varepsilon )^{p-1} \in W^{1,p}(\Omega ) \cap L^\infty (\Omega )\) and its weak gradient is expressed as follows:

$$\begin{aligned} \nabla \left( \frac{|\varphi |^p}{(|u|+\varepsilon )^{p-1}}\right) = p \frac{|\varphi |^{p-2}\varphi }{(|u|+\varepsilon )^{p-1}} \nabla \varphi - (p-1) \frac{|\varphi |^{p}}{(|u|+\varepsilon )^{p}} \left( \nabla u_+ + \nabla u_- \right) . \end{aligned}$$
(B.1)

If, in addition, \(\varphi \in W^{1,p}_0(\Omega )\), then \(|\varphi |^p/(|u|+\varepsilon )^{p-1} \in W^{1,p}_0(\Omega )\).

Proof

The proof is based on classical arguments, so we will be sketchy. First, we observe that \(|\varphi |^p \in W^{1,p}(\Omega ) \cap L^\infty (\Omega )\). Indeed, since \(\varphi \in L^\infty (\Omega )\), we can find a function \(G \in C^1(\mathbb {R})\) such that \(G(s)=|s|^p\) for \(s \in [-\Vert \varphi \Vert _\infty ,\Vert \varphi \Vert _\infty ]\) and \(|G'(s)| \le M\) for all \(s \in \mathbb {R}\) and some uniform constant \(M>0\). Then [30, Theorem 1.18] ensures that \(G(\varphi ) \equiv |\varphi |^p \in W^{1,p}(\Omega )\) and its weak gradient is calculated according to the classical rules. Clearly, we also have \(|\varphi |^p \in L^\infty (\Omega )\).

It can be shown in a similar way that \(1/(|u|+\varepsilon )^{p-1} \in W^{1,p}(\Omega ) \cap L^\infty (\Omega )\). Indeed, we can find a function \(H \in C^1(\mathbb {R})\) such that \(H(s) = 1/s^{p-1}\) for \(s \in [\varepsilon ,\infty )\) and \(|H'(s)| \le M\) for all \(s \in \mathbb {R}\) and some uniform constant \(M>0\). Since \(\Omega \) is bounded, we have \(|u|+\varepsilon \in W^{1,p}(\Omega )\). Hence, we deduce from [30, Theorem 1.18] that \(H(|u|+\varepsilon ) \equiv 1/(|u|+\varepsilon )^{p-1} \in W^{1,p}(\Omega )\), and its weak gradient can be expanded by the classical rules. Since \(1/(|u|+\varepsilon )^{p-1} \le 1/\varepsilon ^{p-1}\), we conclude that \(1/(|u|+\varepsilon )^{p-1} \in L^\infty (\Omega )\).

Applying now [30, Theorem 1.24 (i)], we see that \(|\varphi |^p/(|u|+\varepsilon )^{p-1} \in W^{1,p}(\Omega ) \cap L^\infty (\Omega )\) and its weak gradient is given by the expression (B.1). If we additionally assume that \(\varphi \in W^{1,p}_0(\Omega )\), then, by a simple amendment of the proof of [30, Theorem 1.18], we have \(|\varphi |^p \in W_0^{1,p}(\Omega )\), and hence \(|\varphi |^p/(|u|+\varepsilon )^{p-1} \in W_0^{1,p}(\Omega )\) by [30, Theorem 1.24 (ii)]. \(\square \)

Under stronger requirements on the functions \(\varphi \) and u, we can omit \(\varepsilon \) in Lemma B.1.

Lemma B.2

Let \(\varphi \in W^{1,p}(\Omega ) \cap L^\infty (\Omega )\) and \(u \in W^{1,p}(\Omega )\) be such that \(K:=\textrm{supp}\, \varphi \subset \Omega \) and \(\mathrm {ess\,inf}_{K}\,|u| > 0\). Then \(|\varphi |^p/|u|^{p-1} \in W_0^{1,p}(\Omega ) \cap L^\infty (\Omega )\) and its weak gradient is expressed as in (B.1) with \(\varepsilon =0\).

Proof

Arguments are similar to those from the proof of Lemma B.1 and hence we omit the details. \(\square \)

In view of the expression (B.1), one can argue exactly as in the proof of [3, Theorem 1.1] to obtain the following weak version of the Picone inequality, see also [1, Section 2] and [53, Section 3.2] for related results.

Lemma B.3

Let \(\varphi \in W^{1,p}(\Omega ) \cap L^\infty (\Omega )\) and \(u \in W^{1,p}(\Omega )\) be such that \(u \ge 0\) a.e. in \(\Omega \). Let \(\varepsilon >0\). Then the following inequality holds:

$$\begin{aligned} \int _\Omega |\nabla u|^{p-2} \nabla u\nabla \left( \frac{|\varphi |^p}{(u+\varepsilon )^{p-1}}\right) dx \le \int _\Omega |\nabla \varphi |^{p} \,dx. \end{aligned}$$
(B.2)

If, in addition, \(K:=\textrm{supp}\, \varphi \subset \Omega \) and \(\mathrm {ess\,inf}_{K}\,u > 0\), then (B.2) holds with \(\varepsilon =0\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobkov, V., Tanaka, M. On the antimaximum principle for the p-Laplacian and its sublinear perturbations. Partial Differ. Equ. Appl. 4, 21 (2023). https://doi.org/10.1007/s42985-023-00235-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42985-023-00235-1

Keywords

Mathematics Subject Classification

Navigation