Skip to main content
Log in

Nonhomogeneous Dirichlet problems for the p-Laplacian

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study the existence, nonexistence and multiplicity of positive solutions for a family of problems \(-\Delta _p \,u=f_\lambda (x,u) \) in \(\Omega , u = \varphi \ \text{ on } ~\partial \Omega \), where \(\lambda > 0\) is a parameter. The family we consider includes in particular the Pohozaev type equation \(-\Delta _p \,u = \lambda u^{p^{*}-1}\). The main new feature is the consideration of the p-Laplacian \(-\Delta _p\) together with a nonzero boundary condition \(\varphi \). In order to deal with these nonhomogeneous problems, it has been important to extend to this new context several basic results such as the Brezis-Nirenberg theorem on local minimization in \(W^{1,p}\) and \(C^1\), a \(C^{1,\alpha }\) estimate for a family of equations with critical growth, and a variational approach to the method of upper–lower solutions. These extensions have an independent interest for applications in other situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abreu, E., do O, J.M., Medeiros, E.: Multiplicity of positive solutions for a class of quasilinear nonhomogeneous Neumann problems. Nonlinear Anal. 60, 1443–1471 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allegretto, W., Huang, Y.X.: A Picone’s identity for the \(p\)-Laplacian and applications. Nonlinear Anal. 32, 819–830 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anane, A.: Etudes des valeurs propres et de la résonance pour l’opérateur p-Laplacien. Université Libre de Bruxelles, Thèse de doctorat (1988)

  4. Andreu, F., Igbiola, N., Mazon, J.M., Toledo, J.: \(L^1\) existence and uniqueness results for quasilinear elliptic equations with nonlinear boundary conditions. Ann. I. H Poincaré 24, 61–89 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bartsch, T., Wang, Z.-Q., Willem, M.: The Dirichlet problem for superlinear elliptic equations. In: . Chipot,M., Quittner, P. (eds.) Handbook of Differential Equations, Stationnary PDE’s, vol. 2, pp. 1–55. Elsevier, Amsterdam (2005)

  6. Brézis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36, 437–477 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brezis, H., Nirenberg, L.: A minimization problem with critical exponent an nonzero data, In: Symmetry in Nature, vol. in honor of L. Radicati, Scuola Normale Superiore Pisa, pp. 129–140 (1989)

  8. Brezis, H., Nirenberg, L.: \(H^1\) versus \(C^1\) local minimizers. C. R. Acad. Sci. Paris Sér. I Math 317, 465–472 (1993)

    MathSciNet  MATH  Google Scholar 

  9. Boccardo, L., Murat, F.: Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations. Nonlinear Anal. 19, 581–597 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brock, F., Iturriaga, L., Ubilla, P.: A multiplicity result for the p-Laplacian involving a parameter. Ann. Henri Poincaré 9, 1371–1386 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cuesta, M., Takac, P.: Nonlinear eigenvalues problems for degenerate elliptic systems. Differ. Integral Equ. 23, 1117–1138 (2010)

    MathSciNet  MATH  Google Scholar 

  12. de Figueiredo, D., Gossez, J.-P., Ubilla, P.: Multiplicity results for a family of semilinear elliptic problems under local superlinearity and sublinearity. J. Eur. Math. Soc. 8, 269–286 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. de Figueiredo, D., Gossez, J.-P., Ubilla, P.: Local superlinearity and sublinearity for the p-Laplacian. J. Funct. Anal. 3, 721–752 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. de Figueiredo, D.: Lectures on the Ekeland Variational Principle with Applications and Detours, Tata Institute of Fundamental Research, Lectures on Mathematics and Physics, 81, Springer, Heidelberg (1989)

  15. de Thélin, F.: Résultats d’existence et de non-existence pour la solution positive et bornée d’une e.d.p. elliptique non linéaire, Ann. Fac. Sci. Toulouse, 8 (1986–1987), 375–389

  16. García, J., Peral, I.: Some results about the existence of a second positive solution in a quasilinear critical problem. Indiana Univ. Math. J. 43, 941–957 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. García, J., Peral, I., Manfredi, J.: Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations. Commun. Contemp. Math. 2, 385–404 (2000)

    MathSciNet  MATH  Google Scholar 

  18. Guedda, M., Véron, L.: Quasilinear elliptic equations involving critical Sobolev exponents. Nonlinear Anal. 13, 879–902 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ladyženskaja, O.A., Ural’ceva, N.N.: Équations aux dérivées partielles de type elliptique, Dunod, Paris (1968)

  20. Lieberman, G.M.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12, 1203–1219 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lucia, M., Prashanth, S.: Strong comparison principle for solutions of quasilinear equations. Proc. Am. Math. Soc. 132, 1005–1011 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Otani, M.: Existence and nonexistence of nontrivial solutions of some nonlinear degenerate elliptic equations. J. Funct. Anal. 76, 140–159 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pohozaev, S.: On the eigenfunctions of the equation \(\Delta u + f(u)=0\). Dokl. Akad. Nauk SSSR 165, 36–39 (1965)

    MathSciNet  Google Scholar 

  24. Pucci, P., Serrin, J.: A general variational identity. Indiana Univ. Math. J. 35, 681–703 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ramos, H., Ubilla, P.: An indefinite and critical concave-convex type equation. Proc. R Soc Edinb 143, 169–184 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Struwe, M.: Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, 3rd edn. Springer, Heidelberg (2000)

    Book  MATH  Google Scholar 

  27. Tarantello, G.: On nonhomogeneous elliptic equations involving critical Sobolev exponent. Ann. Inst. H. Poincaré Anal. Non Linéaire 9, 281–304 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tolksdorf, P.: On the Dirichlet problem for quasilinear equations in domains with conical boundary points. Comm. Partial Differ. Equ. 8, 773–817 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  29. Vázquez, J.L.: A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12, 191–202 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yuan, C.: On Nonhomogeneous Quasilinear PDE’s Involving the p-Laplacian and the Critical Sobolev Exponent, Ph.D. thesis, University British Columbia (1998)

Download references

Acknowledgements

We wish to thank the referee for some suggestions which have helped to improve the presentation of the paper. Djairo G. De Figueiredo was partially supported by CNPq, FNRS, PRONEX and FAPESP, the Jean-Pierre Gossez by CNPq and FNRS, Pedro Ubilla by FONDECYT 1120524.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Gossez.

Additional information

Communicated by P. Rabinowitz.

Appendix

Appendix

1.1 Upper–lower solution

Let g(xs) be a Carathéodory function on \(\Omega \times \mathbb {R}\) with the property that for any \(s_0 > 0\), there exists a constant A such that \(|g (x,s)| \le A\) for a.e. \( x \in \Omega \) and all \(s \in [-s_0, s_0]\). Let \(u_0 \in W^{1,p} (\Omega ) \cap L^\infty (\Omega )\) and \(u_1 \in W^{1-1/p,p}(\partial \Omega ) \cap L^\infty (\partial \Omega )\).

A function \(u \in W^{1,p} (\Omega ) \cap L^\infty (\Omega )\) is called a lower solution of the problem

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta _p (u + u_0)= g (x,u) \ \text{ in } \ \Omega ,\\ u= u_1 \ \text{ on } \ \partial \Omega \end{array}\right. } \end{aligned}$$
(4.1)

if \(u \le u_1 \ \text{ on } \ \partial \Omega \) and

$$\begin{aligned} \int _\Omega |\nabla (u + u_0) |^{p-2} \nabla (u + u_0) \nabla \psi \ \le \ \int _\Omega \ g (x,u) \psi \end{aligned}$$

for all \(\psi \in W^{1,p}_0 (\Omega )\) with \(\psi \ge 0 \) in \(\Omega \). An upper solution is defined similarly.

Proposition 4.1

Assume \(\underline{u}\) and \(\bar{u} \) are respectively lower and upper solutions for (4.1), with \(\underline{u} \le \bar{u}\) in \(\Omega .\) Consider the functional

$$\begin{aligned} \Phi (u) := \frac{1}{p} \int _\Omega |\nabla (u + u_0)|^p - G (x,u) \end{aligned}$$

where \(G (x,s):= \int ^s_0 g (x,t) dt\), and the interval

$$\begin{aligned} M:= \{u \in W^{1,p} (\Omega ) : \underline{u} \le u \le \bar{u} \ \text{ in } \ \Omega \ \text{ and } \ u = u_1 \ \text{ on } \ \partial \Omega \}. \end{aligned}$$

Then \(\Phi \) achieves its infimum on M at some u, and any such minimizer u is a solution of (4.1).

Proof

It is adapted from [26] and [13] which deal with the homogeneous case \(u_0 = u_1 = 0\), for \(p=2\) and \(1<p<\infty \) respectively. By coercivity and weak lower semicontinuity, one easily sees that the infimum of \(\Phi \) on M is achieved at some u. The proof that any such minimizer u solves (4.1) follows exactly the same argument as in Proposition 3.1 of [13], using in particular the monotonicity of \(-\Delta _p\). One point worth mentioning here is that, with the notations from p. 729 in [13], the function \(\varphi ^\epsilon := (u + \epsilon \varphi - \bar{u})^+\) vanishes on \(\partial \Omega \) and so is an admissible testing function in the definition of an upper solution. \(\square \)

Note that the general restriction \(p < N\) plays no role in Proposition 4.1.

1.2 Regularity and a priori estimate

The following result provides some regularity for the solutions of (1.1) in the subcritical and critical case. It also gives an a priori estimate which will be of importance in the study of local minimization in \(C^1\) and \(W^{1,p}\) in the next subsection.

Proposition 4.2

Let a sequence \(u_k \in W^{1,p}(\Omega )\) satisfy

$$\begin{aligned} -\Delta _p u_k = h_k (x,u_k) \ \text{ in } \ \Omega \end{aligned}$$
(4.2)

where the Carathéodory functions \(h_k (x,s)\) verify the uniform growth condition

$$\begin{aligned} |h_k (x,s)| \le C_1 + C_2 |s|^{p^*-1} \end{aligned}$$

for a.e. \(x \in \Omega \), all \(s \in \mathbb {R}\) and all k. Assume that \(u_k\) remains bounded in \(W^{1,p} (\Omega )\) and that \(u_k | _{\partial \Omega }\) belongs to \(L^\infty (\partial \Omega )\) and remains bounded in \(L^\infty (\partial \Omega )\). Moreover assume that \(\int _E |u_k|^{p^*} \rightarrow 0\) as \(|E| \rightarrow 0\), uniformly with respect to k. Then \(u_k\) belongs to \(L^\infty (\Omega )\) and remains bounded in \(L^\infty (\Omega )\). If in addition \(u_k|_{\partial \Omega }\) belongs to \(C^{1,\alpha } (\partial \Omega )\) and remains bounded in \(C^{1,\alpha } (\partial \Omega )\), then \(u_k\) belongs to \(C^{1,\beta } (\bar{\Omega }) \) for some \(\beta = \beta (\alpha , N, p)\) and remains bounded in \(C^{1,\beta } (\bar{\Omega })\).

For a single \(u_k\) which vanishes on \(\partial \Omega \), the regularity result provided by Proposition 4.2 was obtained in [16, 18]. The a priori estimate for \(u_k\) vanishing on \(\partial \Omega \) was obtained in [13]. Comments on the necessity of the requirement relative to the uniform equiintegrability of \(u_k\) in \(L^{p^*} (\Omega )\) can be found in [13, p. 731].

Remark 4.3

In the subcritical case where \(h_k\) satisfies \(|h_k (x,s)| \le C_1 + C_2 |s|^{q-1}\) for some \(q < p^*\), no requirement of uniform equiintegrability is needed. The conclusion of Proposition 4.2 then follows directly by using successively [3] and [20].

Remark 4.4

The same conclusions as above hold for \(u_k\) if (4.2) is replaced by \(-\Delta _p (u_k + v_k) = h_k (x , u_k)\) provided \(v_k\) remains bounded in \(W^{1,p} (\Omega )\) as well as in \(L^\infty (\Omega )\) (or \(C^{1,\alpha } (\bar{\Omega })\) for the last part of the conclusion). Just apply Proposition 4.2 to \(w_k:= u_k + v_k\).

Proof of Proposition 4.2

We break it in 3 steps: (i) there exists \(r > p^*\) such that \(u_k\) remains bounded in \(L^r (\Omega )\), (ii) \(u_k\) remains bounded in \(L^\infty (\Omega )\), (iii) under the additional assumption on the \(C^{1,\alpha }\) behavior of \(u_k\) on \(\partial \Omega \), there exists \(\beta \in ] 0,1[\) such that \(u_k\) remains bounded in \(C^{1,\beta } (\bar{\Omega })\).

Proof of step (i). It is obtained by adapting arguments from [16] and [13]. Take \(\beta > 1\) with \(\beta p < p^*\) and let \(l > 0\). Define for \(s \ge 0\), as in Moser iteration technique,

$$\begin{aligned} F (s):= {\left\{ \begin{array}{ll} s^\beta \ \text{ if } \ s \le l, \\ \beta l^{\beta - 1} (s -l) + l^\beta \ \text{ if } \ s > l, \end{array}\right. } \end{aligned}$$

and

$$\begin{aligned} G (s):= {\left\{ \begin{array}{ll} s^{(\beta -1) p + 1} \ \text{ if } \ s \le l, \\ \beta ((\beta - 1) p+1) l^{(\beta -1) p} (s -l) + l^{(\beta -1) p+1} \ \text{ if } \ s > l. \end{array}\right. } \end{aligned}$$

For any non negative \(\eta \in C^\infty _c (\mathbb {R}^N)\), consider the function \(\eta ^p G ((u_k - M)^+)\) where the constant M satisfies \(\Vert u_k\Vert _{L^\infty (\partial \Omega )} \le M \) for all k. Since this function vanishes on \(\partial \Omega \), it belongs to \(W^{1,p}_0 (\Omega )\) and so is an admissible testing function in (4.2). At this point one can follow word by word the calculations on [16, p. 951–952] to reach

$$\begin{aligned}&\left( \int _\Omega [F((u_k - M)^+]^{p^*} \eta ^{p^*}\right) ^{p/p^*} \le C_1 \int _\Omega |\nabla \eta |^p [F ((u_k - M)^+)]^p \nonumber \\&\quad +\, C_2 \int _\Omega \eta ^p [(u_k - M)^+]^{p^*-p} [F ((u_k - M)^+)]^p + C_3 \end{aligned}$$
(4.3)

for some constants \(C_1, C_2, C_3\) independent of \(k, \eta , l\). We now use the assumption of uniform equiintegrability to find \(R > 0\) such that

$$\begin{aligned} \Vert (u_k - M)^+\Vert ^{p^* - p}_{L p^* (B \cap \Omega )} \le 1/2 C_2 \end{aligned}$$

for any ball B of radius \(\le R \) in \(\mathbb {R}^N\) and for all k. Restricting \(\eta \) to have support in such a ball and using Hölder inequality, one obtains

$$\begin{aligned} C_2 \int _\Omega \eta ^p [(u_k - M)^+]^{p^* - p} \,[F((u_k - M)^+)]^p \le \frac{1}{2} \left( \int _\Omega \eta ^{p^*} [F((u_k - M)^+)]^{p^*}\right) ^{p/p^*}. \end{aligned}$$

Consequently (4.3) implies

$$\begin{aligned} \left( \int _\Omega \eta ^{p^*}[ F((u_k - M)^+)]^{p^*}\right) ^{p/p^*} \le C (\eta ) \int _\Omega [F((u_k - M)^+)]^p + C_3 \end{aligned}$$

with \(C (\eta )\) a constant independent of kl. Letting \(l \rightarrow \infty \) yields

$$\begin{aligned} \left( \int _\Omega \eta ^{p^*}((u_k - M)^+)^{\beta p^*}\right) ^{p/p^*}\le C (\eta ) \int _\Omega ((u_k - M)^+)^{\beta p} + C_3. \end{aligned}$$

Covering \(\bar{\Omega }\) with a finite number of balls of radius \(\le R\), one deduces that \((u_k - M)^+\) remains bounded in \(L^{\beta p^*} (\Omega )\). And a similar argument applied to \((u_k + M)^-\) yields the conclusion of step (i).

Proof of step (ii). Theorem 7.1 from [19] can be applied to (4.2) to derive that \(u_k\) remains bounded in \(L^\infty (\Omega )\). In fact a particular case of this result of [19] suffices here, which is recalled as Lemma 4.5 below. Here are some details on the application of this Lemma 4.5 to (4.2): (4.4) clearly holds with \(\varphi _1 \equiv 0\); taking \(r > p^*\) as given by step (i), one can verify (4.5) with \(\alpha _2 = p^* - 1\) and \(\varphi _2\) a suitable constant by picking \(r_2\) sufficiently large.

Proof of step (iii). Once the \(L^\infty \) estimate of step (ii) is obtained, the global regularity result of [20] can be applied and yields the conclusion of step (iii). \(\square \)

Lemma 4.5

(cf. [19]). Let \(u \in W^{1,p} (\Omega ) \cap L^r (\Omega )\) with \(r \ge p^*\) satisfy \(u /_{\partial \Omega } \in L^\infty (\partial \Omega )\) and

$$\begin{aligned} \int _\Omega a (x,u, \nabla u) \nabla v = \int _\Omega b (x,u) v \end{aligned}$$

for v of the form \((u - C)^+\) or \((u + C)^-\), C any constant with \(C > \Vert u\Vert _{L^\infty (\partial \Omega )}\). Here the function \(a (x,s,\eta )\) and b(xs) are assumed to verify for \(x \in \Omega , s \in \mathbb {R}\) and \(\eta \in \mathbb {R}^N\),

$$\begin{aligned} \langle a (x,s, \eta ), \eta \rangle\ge & {} \nu |\eta |^P - (1 + |s|^{\alpha _1}) \varphi _1 (x), \end{aligned}$$
(4.4)
$$\begin{aligned} (\text{ sign } \ s) b (x,s)\le & {} (1 + |s|^{\alpha _2}) \varphi _2 (x), \end{aligned}$$
(4.5)

with \(\nu \) a positive constant, \(0 \le \varphi _i \in L^{r_i} (\Omega ), \ r_i > N/p, \ 0 \le \alpha _1 < p \frac{N + r}{N-1} - \frac{r}{r_1}\) and \(0 \le \alpha _2 < p \frac{N + r}{N} - 1 - \frac{r}{r_2}\). Then \(u \in L^\infty (\Omega )\) and \(||u||_{L^\infty (\Omega )}\) can be estimated in terms of \(\Vert u\Vert _{L^r(\Omega )},\) \(\Vert u\Vert _{L^\infty (\partial \Omega )}, \ \nu , \alpha _i, \Vert \varphi _i\Vert _{L^{r_i} \Omega } \) and \(\Omega .\)

1.3 Local minimization in \(C^1\) and \(W^{1,p}\)

In our study of multiplicity, we use the following extension of a well-known result from [8].

Proposition 4.6

Let \(\Phi (u)\) be a functional of the form \(\Phi (u):= \frac{1}{p} \int _\Omega |\nabla u|^P - \int _\Omega G (x, u)\) where \(G (x,s) : = \int ^s_0 g (x,t \ dt)\) and g satisfies the growth condition

$$\begin{aligned} |g (x,s)| \le d_1 + d_2 |s|^{p^* - 1} \end{aligned}$$

for some constants \(d_1, d_2\). Let

$$\begin{aligned} \mathcal {M} := \{u \in W^{1,p} (\Omega ): u|_{\partial \Omega } = \varphi \} \end{aligned}$$

where \(\varphi \in C^{1,\alpha } (\partial \Omega )\). Let \(u_0\) be a local minimum of \(\Phi \) on \(\mathcal {M}\) for the \(C^1 (\bar{\Omega })\) topology, i.e. \(\Phi (u_0) \le \Phi (u_0 + w)\) for some \(\epsilon > 0\) and all \(w \in C^1_0 (\bar{\Omega })\) with \(\Vert w\Vert _{C^1_0 (\bar{\Omega )}} \le \epsilon \). Then \(u_0 \in C^{1,\beta } (\bar{\Omega })\) for some \(\beta \in ]0,1[\) and \(u_0\) is a local minimizer of \(\Phi \) on \(\mathcal {M}\) for the \(W^{1,p}(\Omega )\) topology, i.e. \(\Phi (u_0) \le \Phi (u_0 + w)\) for some \(\epsilon _1 > 0\) and all \(w \in W^{1,p}_0 (\Omega )\) with \(\Vert w\Vert _{W^{1,p}_0 (\Omega )} \le \epsilon _1\).

Proposition 4.6 was proved in [8] for \(p = 2\) and \(\varphi \equiv 0 \), and in [13] for \(1< p < \infty \) and \(\varphi \equiv 0\) (see also [10, 17], ... for related works). The proof below is adapted from [13].

Remark 4.7

The same conclusion holds if one replaces \(\Phi (u)\) by

$$\begin{aligned} \tilde{\Phi } (u) : = \frac{1}{p} \int _\Omega |\nabla (u + u_1)|^p \ \ -\int _\Omega G (x,u) \end{aligned}$$

where \(u_1\) is a fixed function in \(C^{1,\alpha } (\bar{\Omega })\). It suffices to apply Proposition 4.6 to \(v : = u + u_1\).

Proof of Proposition 4.6

Since \(u_0\) satisfies

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta _p u_0 = g (x, u_0) \ \text{ in } \ \Omega , \\ u_0 = \varphi \ \text{ on } \ \partial \Omega , \end{array}\right. } \end{aligned}$$

Proposition 4.2 implies \(u_0 \in C^{1, \beta } (\bar{\Omega }).\) Assume by contradiction that \(u_0\) is not a local minimum of \(\Phi \) on \(\mathcal {M}\) for the \(W^{1,p} (\Omega )\) topology. This means that for any \(\epsilon > 0\), there exists \(v_\epsilon \in \mathcal {M}\) with \(\Vert v_\epsilon - u_0\Vert _{W^{1,p}} \le \epsilon \) and \(\Phi (v_\epsilon ) < \Phi (u_0)\). For later use of Lagrange multiplier rule, it will be convenient to use only a consequence of that, namely \(\Vert v_\epsilon -u_0\Vert _{L^{p^*}} \le \epsilon \) and \(\Phi (v_\epsilon ) < \Phi (u_0)\).

The argument exactly follows the same lines as in [13] and we only sketch it. One introduces the same truncated functional \(\Phi _j \) as in [13] and finds \(j_\epsilon \) such that \(\Phi _{j_\epsilon } (v_\epsilon ) < \Phi (u_0)\). One also observes that \(\Phi _{j_\epsilon }\) achieves it infimum on \(\{v \in \mathcal {M} : \Vert v - u_0\Vert _{L^{p^*}} \le \epsilon \}\) at some \(u_\epsilon \). The main point of the proof then consists in proving that \(u_\epsilon \) remains bounded in some \(C^{1,\beta } (\bar{\Omega })\) as \(\epsilon \rightarrow 0\). To prove this latter fact, one writes the Euler equation satisfied by \(u_\epsilon :\)

$$\begin{aligned} {\left\{ \begin{array}{ll} \begin{array}{ll} -\Delta _p u_\epsilon = g_{j_\epsilon } (x , u_\epsilon ) + \mu _\epsilon |u_\epsilon - u_0|^{p^* - 2} (u_\epsilon - u_0)\ \text{ in }\,\,\, {\Omega },\\ u_\epsilon = \varphi \ \text{ on } \ \partial \Omega . \end{array} \end{array}\right. } \end{aligned}$$
(4.6)

where \(g_{j_\epsilon }\) comes from the truncation of g and where \(\mu _\epsilon \) is a Lagrange multiplier associated to the constraint \(\Vert v - u_0\Vert _{L^{P^*}} \le \epsilon \). Since \(u_0 - u_\epsilon \) belongs to \(W^{1,p}_0 (\Omega )\), it is an admissible testing function in (4.6), and one can deduce \(\mu _\epsilon \le 0\). The rest of the argument is then identical to that in [13], using the estimate of Proposition 4.2. The only point worth mentioning is that one should take M in formula (3.17) from [13] larger than \(\Vert \varphi \Vert _{L^\infty (\partial \Omega )}\) in order to guarantee that \((u_\epsilon - M)^+\) and \((u_\epsilon + M)^-\) are admissible testing function in (4.6). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Figueiredo, D.G., Gossez, JP. & Ubilla, P. Nonhomogeneous Dirichlet problems for the p-Laplacian. Calc. Var. 56, 32 (2017). https://doi.org/10.1007/s00526-017-1113-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1113-0

Mathematics Subject Classification

Navigation