Skip to main content
Log in

Uniqueness and positivity issues in a quasilinear indefinite problem

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider the problem

$$\begin{aligned} (P_\lambda )\quad -\Delta _{p}u=\lambda u^{p-1}+a(x)u^{q-1},\quad u\ge 0\quad \text{ in } \Omega \end{aligned}$$

under Dirichlet or Neumann boundary conditions. Here \(\Omega \) is a smooth bounded domain of \({\mathbb {R}}^{N}\) (\(N\ge 1\)), \(\lambda \in {\mathbb {R}}\), \(1<q<p\), and \(a\in C({\overline{\Omega }})\) changes sign. These conditions enable the existence of dead core solutions for this problem, which may admit multiple nontrivial solutions. We show that for \(\lambda <0\) the functional

$$\begin{aligned} I_{\lambda }(u):=\int _{\Omega }\left( \frac{1}{p}|\nabla u|^{p}-\frac{\lambda }{p}|u|^{p}-\frac{1}{q}a(x)|u|^{q}\right) , \end{aligned}$$

defined in \(X=W_{0}^{1,p}(\Omega )\) or \(X=W^{1,p}(\Omega )\), has exactly one nonnegative global minimizer, and this one is the only solution of \((P_{\lambda })\) being positive in \(\Omega _{a}^{+}\) (the set where \(a>0\)). In particular, this problem has at most one positive solution for \(\lambda <0\). Under some condition on a, the above uniqueness result fails for some values of \(\lambda >0\) as we obtain, besides the ground state solution, a second solution positive in \(\Omega _{a}^{+}\). We also provide conditions on \(\lambda \), a and q such that these solutions become positive in \(\Omega \), and analyze the formation of dead cores for a generic solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. DiBenedetto, E.: \(C^{1+\alpha }\) local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7, 827–850 (1983)

    Article  MathSciNet  Google Scholar 

  2. Lieberman, G.M.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12, 1203–1219 (1988)

    Article  MathSciNet  Google Scholar 

  3. Díaz, J. I.: Nonlinear Partial Differential Equations and Free Boundaries. Vol.I. Elliptic equations. Research Notes in Mathematics 106, Pitman, London, 323 pp (1985)

  4. Bandle, C., Pozio, M., Tesei, A.: The asymptotic behavior of the solutions of degenerate parabolic equations. Trans. Am. Math. Soc. 303, 487–501 (1987)

    Article  MathSciNet  Google Scholar 

  5. Bandle, C., Pozio, M., Tesei, A.: Existence and uniqueness of solutions of nonlinear Neumann problems. Math. Z. 199, 257–278 (1988)

    Article  MathSciNet  Google Scholar 

  6. Kaufmann, U., Ramos Quoirin, H., Umezu, K.: Positivity results for indefinite sublinear elliptic problems via a continuity argument. J. Differ. Equ. 263, 4481–4502 (2017)

    Article  MathSciNet  Google Scholar 

  7. Kaufmann, U., Ramos Quoirin, H., Umezu, K.: A curve of positive solutions for an indefinite sublinear Dirichlet problem. Discrete Contin. Dyn. Syst. 40, 617–645 (2020)

    Article  MathSciNet  Google Scholar 

  8. Brezis, H., Oswald, L.: Remarks on sublinear elliptic equations. Nonlinear Anal. 10, 55–64 (1986)

    Article  MathSciNet  Google Scholar 

  9. Díaz, J.I., Saa, J.E.: Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires. (French) [Existence and uniqueness of positive solutions of some quasilinear elliptic equations]. C. R. Acad. Sci. Paris Sér I Math. 305, 521–524 (1987)

    MathSciNet  MATH  Google Scholar 

  10. Idogawa, T., Otani, M.: The first eigenvalues of some abstract elliptic operators. Funkcialaj Ekvacioj 38, 1–9 (1995)

    MathSciNet  MATH  Google Scholar 

  11. Vázquez, J.L.: A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12, 191–202 (1984)

    Article  MathSciNet  Google Scholar 

  12. Alama, S., Tarantello, G.: On semilinear elliptic equations with indefinite nonlinearities. Calc. Var. Partial Differ. Equ. 1, 439–475 (1993)

    Article  MathSciNet  Google Scholar 

  13. Amann, H., López-Gómez, J.: A priori bounds and multiple solutions for superlinear indefinite elliptic problems. J. Differ. Equ. 146, 336–374 (1998)

    Article  MathSciNet  Google Scholar 

  14. Berestycki, H., Capuzzo-Dolcetta, I., Nirenberg, L.: Superlinear indefinite elliptic problems and nonlinear Liouville theorems. Topol. Methods Nonlinear Anal. 4, 59–78 (1994)

    Article  MathSciNet  Google Scholar 

  15. Berestycki, H., Capuzzo-Dolcetta, I., Nirenberg, L.: Variational methods for indefinite superlinear homogeneous elliptic problems. NoDEA Nonlinear Differ. Equ. Appl. 2, 553–572 (1995)

    Article  MathSciNet  Google Scholar 

  16. Birindelli, I., Demengel, F.: Existence of solutions for semi-linear equations involving the p-Laplacian: the non coercive case. Calc. Var. Partial Differ. Equ. 20, 343–366 (2004)

    Article  MathSciNet  Google Scholar 

  17. Il’yasov, Y.: On positive solutions of indefinite elliptic equations. Comptes Rendus de l’Académie des Sci. Ser. I-Math. 333, 533–538 (2001)

    MathSciNet  MATH  Google Scholar 

  18. Ouyang, T.: On the positive solutions of semilinear equations \(\Delta u+\lambda u+hu^{p}=0\) on compact manifolds II. Indiana Univ. Math. J. 40, 1083–1141 (1991)

    Article  MathSciNet  Google Scholar 

  19. Kaufmann, U., Ramos Quoirin, H., Umezu, K.: Uniqueness and sign properties of minimizers in a quasilinear indefinite problem. Commun. Pure Appl. Anal. 20, 2313–2322 (2021)

  20. Kaufmann, U., Ramos Quoirin, H., Umezu, K.: Past and recent contributions to indefinite sublinear elliptic problems. Rend. Istit. Mat. Univ. Trieste. 52, 217–241 (2020)

  21. Alama, S.: Semilinear elliptic equations with sublinear indefinite nonlinearities. Adv. Differ. Equ. 4, 813–842 (1999)

    MathSciNet  MATH  Google Scholar 

  22. Brown, K.J.: The Nehari manifold for a semilinear elliptic equation involving a sublinear term. Calc. Var. Partial Differ. Equ. 22, 483–494 (2005)

    Article  MathSciNet  Google Scholar 

  23. Kaufmann, U., Ramos Quoirin, H., Umezu, K.: Positive solutions of an elliptic Neumann problem with a sublinear indefinite nonlinearity. NoDEA Nonlinear Differ. Equ. Appl. 25, 34 (2018)

    Article  MathSciNet  Google Scholar 

  24. Keller, H.B., Cohen, D.S.: Some positone problems in nonlinear heat conduction. J. Math. Mech. 16, 1361–1376 (1967)

    MathSciNet  MATH  Google Scholar 

  25. Belloni, M., Kawohl, B.: A direct uniqueness proof for equations involving the \(p\)-Laplace operator. Manuscripta Math. 109, 229–231 (2002)

    Article  MathSciNet  Google Scholar 

  26. Delgado, M., Suárez, A.: On the uniqueness of positive solution of an elliptic equation. Appl. Math. Lett. 18, 1089–1093 (2005)

    Article  MathSciNet  Google Scholar 

  27. Godoy, T., Kaufmann, U.: Existence of strictly positive solutions for sublinear elliptic problems in bounded domains. Adv. Nonlinear Stud. 199, 2015–2038 (2020)

    Google Scholar 

  28. García-Melián, J., Sabina de Lis, J.: Maximum and comparison principles for operators involving the p-Laplacian. J. Math. Anal. Appl. 218, 49–65 (1998)

    Article  MathSciNet  Google Scholar 

  29. Kaufmann, U., Ramos Quoirin, H., Umezu, K.: Nonnegative solutions of an indefinite sublinear Robin problem I: positivity, exact multiplicity, and existence of a subcontinuum. Annali di Matematica. 199, 2015–2038 (2020)

    Article  MathSciNet  Google Scholar 

  30. Kaufmann, U., Ramos Quoirin, H., Umezu, K.: Nonnegative solutions of an indefinite sublinear Robin problem II: local and global exactness results., to appear in Israel J. Math

  31. Kawohl, B., Lucia, M., Prashanth, S.: Simplicity of the principal eigenvalue for indefinite quasilinear problems. Adv. Differ. Equ. 12, 407–434 (2007)

    MathSciNet  MATH  Google Scholar 

  32. Brasco, L., Franzina, G.: Convexity properties of Dirichlet integrals and Picone-type inequalities. Kodai Math. J. 37, 769–799 (2014)

    Article  MathSciNet  Google Scholar 

  33. Arcoya, D., Ruiz, D.: The Ambrosetti-Prodi problem for the p-Laplacian operator. Comm. Partial Differ. Equ. 31, 849–865 (2006)

    Article  MathSciNet  Google Scholar 

  34. Damascelli, L.: Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results. Ann. Inst. H. Poincaré Anal. Non Linéaire 15, 493–516 (1998)

    Article  MathSciNet  Google Scholar 

  35. Guedda, M., Veron, L.: Quasilinear elliptic equations involving critical Sobolev exponents. Nonlinear Anal. 13, 879–902 (1989)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humberto Ramos Quoirin.

Additional information

Communicated by P. H. Rabinowitz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author was partially supported by Secyt-UNC 33620180100016CB. The third author was supported by JSPS KAKENHI Grant Number JP18K03353.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaufmann, U., Ramos Quoirin, H. & Umezu, K. Uniqueness and positivity issues in a quasilinear indefinite problem. Calc. Var. 60, 187 (2021). https://doi.org/10.1007/s00526-021-02057-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02057-8

Mathematics Subject Classification

Navigation