Skip to main content
Log in

Ascomycota as a source of natural colorants

  • Biotechnology and Industrial Microbiology - Review
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

In the last few decades, there has been a great demand for natural colorants. Synthetic colorants are known to be easy to produce, are less expensive, and remain stable when subjected to chemical and physical factors. In addition, only small amounts are required to color any material, and unwanted flavors and aromas are not incorporated into the product. Natural colorants present in food, in addition to providing color, also have biological properties and effects that aid in the prevention and cure of many diseases. The main classes of colorants produced by phylum Ascomycota include polyketides and carotenoids. A promising producer of colorants should be able to assimilate a variety of sources of carbon and nitrogen and also exhibit relative stability. The strain should not be pathogenic, and its product should not be toxic. Production processes should also provide the expected color with a good yield through simple extraction methods. Research that seeks new sources of these compounds should continue to seek products of biotechnological origin in order to be competitive with products of synthetic and plant origin. In this review, we will focus on the recent studies on the main producing species, classes, and metabolic pathways of colorants produced by this phylum, historical background, impact of synthetic colorants on human health and the environment, social demand for natural colorants and also an in-depth approach to bioprocesses (influences on production, optimization of bioprocess, extraction, and identification), and limitations and perspectives for the use of fungal-based dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Burrows A (2009) Palette of our palates: a brief history of food coloring and its regulation. Compr Rev Food Sci Food Saf 8:394–408. https://doi.org/10.1111/j.1541-4337.2009.00089.x

    Article  CAS  Google Scholar 

  2. Aberoumand A (2011) A review article on edible pigments properties and sources as natural biocolorants in foodstuff and food industry. World J Dairy Food Sci 6(1):71–78

    Google Scholar 

  3. Sigurdson GT, Tang P, Giusti MM (2017) Natural colorants: food colorants from natural sources. Annu Rev Food Sci Technol 8:261–280. https://doi.org/10.1146/annurev-food-030216-025923

    Article  CAS  PubMed  Google Scholar 

  4. Downham A, Collins P (2000) Colouring our foods in the last and next millennium. Int J Food Sci Technol 35:5–22. https://doi.org/10.1046/j.1365-2621.2000.00373.x

    Article  CAS  Google Scholar 

  5. Babitha S (2009) Microbial pigments. In: Nigam P, Pandey A (eds) Biotechnology for agro-industrial residues utilisation, 1st edn. Springer, Netherlands, pp 47–162. https://doi.org/10.1007/978-1-4020-9942-7

  6. Teixeira MFS, Martins MS, Silva JC Da, Kirsch LS, Ormezinda C, Fernandes C et al (2012) Amazonian biodiversity: pigments from aspergillus and penicillium - characterizations, antibacterial activities and their toxicities. Curr Trends Biotechnol Pharm 6:300–311

  7. Gessler NN, Egorova AS, Belozerskaya TA (2013) Fungal anthraquinones. Appl Biochem Microbiol 49:109–123. https://doi.org/10.1134/S000368381302004X

    Article  CAS  Google Scholar 

  8. Feng Y, Shao Y, Chen F (2012) Monascus pigments. Appl Microbiol Biotechnol 96:1421–1440. https://doi.org/10.1007/s00253-012-4504-3

    Article  CAS  PubMed  Google Scholar 

  9. Shi K, Song D, Chen G, Pistolozzi M, Wu Z, Quan L (2015) Controlling composition and color characteristics of Monascus pigments by pH and nitrogen sources in submerged fermentation. J Biosci Bioeng 120:145–154. https://doi.org/10.1016/j.jbiosc.2015.01.001

    Article  CAS  PubMed  Google Scholar 

  10. Gmoser R, Ferreira JA, Lennartsson PR, Taherzadeh MJ (2017) Filamentous ascomycetes fungi as a source of natural pigments. Fungal Biol Biotechnol 4:1–25. https://doi.org/10.1186/s40694-017-0033-2

    Article  Google Scholar 

  11. Dufossé L, Fouillaud M, Caro Y, Mapari SAS, Sutthiwong N (2014) Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr Opin Biotechnol 26:56–61. https://doi.org/10.1016/j.copbio.2013.09.007

    Article  CAS  PubMed  Google Scholar 

  12. Sen T, Barrow CJ, Deshmukh SK (2019) Microbial pigments in the food industry—challenges and the way forward. Front Nutr 6:1–14. https://doi.org/10.3389/fnut.2019.00007

    Article  CAS  Google Scholar 

  13. Saron C, Felisberti I (2006) Divulgação 29:124–8

  14. Carvalho JC (2004) Desenvolvimento de bioprocesso para a produção de pigmentos a partir de Monascus por fermentação em substrato sólido. Dissertação, Universidade Federal do Paraná

  15. Malik K, Tokkas J, Goyal S (2012) Microbial pigments: a review. International Journal of Microbial Resource Technology 1(4):361–365

    Google Scholar 

  16. Santos-Ebinuma V de C (2013) Produção e extração de colorantes naturais de Penicilium purpurogenum DPUA 1275. Universidade de São Paulo, Dissertação

  17. Chattopadhyay P, Chatterjee S, Sen SK (2008) Biotechnological potential of natural food grade biocolorants. African J Biotechnol 7:2972–2985

    CAS  Google Scholar 

  18. Sharma D, Gupta C, Aggarwal S, Nagpal N (2012) Pigment extraction from fungus for textile dyeing. Indian J Fibre Text Res 37:68–73

  19. Zhang H, Zhan J, Su K, Zhang Y (2006) Food chemistry a kind of potential food additive produced by Streptomyces coelicolor: characteristics of blue pigment and identification of a novel compound, k-actinorhodin 95:186–92. https://doi.org/10.1016/j.foodchem.2004.12.028

  20. Kobylewski S, Jacobson MF (2012) Toxicology of food dyes. Int J Occup Environ Health 18:220–246. https://doi.org/10.1179/1077352512Z.00000000034

    Article  CAS  PubMed  Google Scholar 

  21. Chander M, Arora DS (2007) Evaluation of some white-rot fungi for their potential to decolourise industrial dyes. Dye Pigment 72:192–198. https://doi.org/10.1016/j.dyepig.2005.08.023

    Article  CAS  Google Scholar 

  22. Rodríguez Couto S (2008) Dye removal by immobilised fungi. Biotechnol Adv 27:227–235. https://doi.org/10.1016/j.biotechadv.2008.12.001

    Article  CAS  Google Scholar 

  23. Carneiro PA, Umbuzeiro GA, Oliveira DP, Zanoni MVB (2010) Assessment of water contamination caused by a mutagenic textile effluent/dyehouse effluent bearing disperse dyes. J Hazard Mater 174:694–699. https://doi.org/10.1016/j.jhazmat.2009.09.106

    Article  CAS  PubMed  Google Scholar 

  24. Carmen Z, Daniela S (2012) Textile organic dyes - characteristics, polluting effects and separation/elimination procedures from industrial effluents – a critical overview. In: Puzyn T, Mostrag A (eds) Organic pollutants ten years after the Stockholm convention -environmental and analytical update. IntechOpen. https://doi.org/10.5772/32373

  25. Mahbub KR, Morium B, Ahmed MM, Akond MA, Andrews S (2015) Decolourization of novacron blue and novacron super black azo dyes by Bacillus spp isolated from textile effluents in Bangladesh. J Sci Res 7:45–53. https://doi.org/10.3329/jsr.v7i1-2.18682

    Article  CAS  Google Scholar 

  26. de Oliveira GAR, de Lapuente J, Teixidó E, Porredón C, Borràs M, de Oliveira DP (2016) Textile dyes induce toxicity on zebrafish early life stages. Environ Toxicol Chem 35:429–434. https://doi.org/10.1002/etc.3202

    Article  CAS  PubMed  Google Scholar 

  27. Saxena G, Chandra R, Bharagava RN (2016) Environmental pollution, toxicity profile and treatment approaches for tannery wastewater and its chemical pollutants. In: de Voogt P (ed) Reviews of environmental contamination and toxicology, vol 240. Springer, Cham. https://doi.org/10.1007/398_2015_5009

  28. Rosa JM, Garcia VSG, Boiani NF, Melo CG, Pereira MCC, Borrely SI (2019) Toxicity and environmental impacts approached in the dyeing of polyamide, polyester and cotton knits. J Environ Chem Eng 7:102973. https://doi.org/10.1016/j.jece.2019.102973

    Article  CAS  Google Scholar 

  29. Mapari SAS, Thrane U, Meyer AS (2010) Fungal polyketide azaphilone pigments as future natural food colorants ? Trends Biotechnol 28:300–307. https://doi.org/10.1016/j.tibtech.2010.03.004

    Article  CAS  PubMed  Google Scholar 

  30. Prado MA, Godoy HT (2003) Corantes artificiais em alimentos. Alimentos e Nutrição Araraquara 14(2):237–250

    CAS  Google Scholar 

  31. Gulrajini ML (2001) Present status of natural resource. Indian J Fibre Text Res 26:191–201

    Google Scholar 

  32. Kassinger RG (2003) Dyes: from sea snails to synthetics. Millbrooke Press, Minneapolis

    Google Scholar 

  33. Gokhale S, Tatiya A, Bakliwal S, Fursule R (2004) Natural dye yielding plants. Indian J Nat Prod Resour 3:228–234

    Google Scholar 

  34. Gunasekaran S, Poorniammal R (2008) Optimization of fermentation conditions for red pigment production from Penicillium sp. under submerged cultivation. Afr J Biotechnol 7:1894–1898

    Article  CAS  Google Scholar 

  35. Yusuf M, Shabbir M, Mohammad F (2017) Natural colorants: historical, processing and sustainable prospects. Nat Products Bioprospect 7:123–145. https://doi.org/10.1007/s13659-017-0119-9

    Article  CAS  Google Scholar 

  36. Singh I TI (2015) Global market for natural food colors to reach 1.7 billion US dollars by 2020. Anal Insights

  37. Lopes FC, Tichota DM, Sauter IP, Meira SMM, Segalin J, Rott MB et al (2013) Active metabolites produced by Penicillium chrysogenum IFL1 growing on agro-industrial residues. Ann Microbiol 63:771–778. https://doi.org/10.1007/s13213-012-0532-6

    Article  CAS  Google Scholar 

  38. Li L, Shao Y, Li Q, Yang S, Chen F (2010) Regulating citrinin and pigment production in Monascus ruber M7 308:108–14. https://doi.org/10.1111/j.1574-6968.2010.01992.x

  39. Wijayawardene NN, Hyde KD, Rajeshkumar KC, Hawksworth DL, Madrid H, Kirk PM et al (2017) Notes for genera: ascomycota. 86. https://doi.org/10.1007/s13225-017-0386-0

  40. Kirk PM, Cannon PF, Minter DW, Satlpers J (1962) Dictionary of the fungi. Kew Bull 15:418. https://doi.org/10.2307/4115605

    Article  Google Scholar 

  41. Egidi E, Delgado-Baquerizo M, Plett JM, Wang J, Eldridge DJ, Bardgett RD et al (2019) A few ascomycota taxa dominate soil fungal communities worldwide. Nat Commun 10. https://doi.org/10.1038/s41467-019-10373-z

  42. Beug M, Bessette AE, Bessette AR (2021) Chapter 1. Introduction: Ascomycota—the Ascomycetes. Ascomycete Fungi North Am. A Mushroom Ref. Guid., University of Texas Press, New York. 1–12. https://doi.org/10.7560/754522-003

  43. Pitt JI, Hocking AD (2009) Fungi and food spoilage. 3rd edn. Springer, Dordrecht Heidelberg, London, New York, Cambridge, pp 519. https://doi.org/10.1007/978-0-387-92207-2

  44. Méndez A, Pérez C, Montañéz JC, Martínez G, Aguilar CN (2011) Red pigment production by Penicillium purpurogenum GH2 is influenced by pH and temperature. J Zhejiang Univ Sci B 12:961–968. https://doi.org/10.1631/jzus.B1100039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Poorniammal R, Prabhu S, Dufossé L, Kannan J (2021) Safety evaluation of fungal pigments for food applications. J Fungi 7:1–15. https://doi.org/10.3390/jof7090692

    Article  CAS  Google Scholar 

  46. Meruvu H, dos Santos JC (2021) Colors of life: a review on fungal pigments. Crit Rev Biotechnol 41:1153–1177. https://doi.org/10.1080/07388551.2021.1901647

    Article  PubMed  Google Scholar 

  47. Venkatachalam M, Magalon H, Dufossé L, Fouillaud M (2018) Journal of food composition and analysis production of pigments from the tropical marine-derived fungi Talaromyces albobiverticillius: New resources for natural red-colored metabolites. J Food Compos Anal 70:35–48. https://doi.org/10.1016/j.jfca.2018.03.007

    Article  CAS  Google Scholar 

  48. Caro Y, Venkatachalam M, Lebeau J, Fouillaud M, Dufossé L (2017) Pigments and colorants from filamentous fungi. Fungal Metab 499–568. https://doi.org/10.1007/978-3-319-25001-4_26

  49. Alcaíno J, Baeza M, Cifuentes V (2016) Carotenoid distribution in nature. Carotenoids Nat 3–33. https://doi.org/10.1007/978-3-319-39126-7_1

  50. Aishwarya AD (2014) Extraction of natural dyes from fungus – an alternative for textile dyeing. J Nat Sci Res 4:1–6

    Google Scholar 

  51. Miao FP, Li XD, Liu XH, Cichewicz RH, Ji N (2012) Secondary metabolites from an algicolous Aspergillus versicolor strain. Mar Drugs 10:131–139

    Article  CAS  Google Scholar 

  52. Schwechheimer SK, Becker J, Peyriga L, Portais JC, Sauer D, Müller R et al (2018) Improved riboflavin production with Ashbya gossypii from vegetable oil based on 13C metabolic network analysis with combined labeling analysis by GC/MS, LC/MS, 1D, and 2D NMR. Metab Eng 47:357–373. https://doi.org/10.1016/j.ymben.2018.04.005

    Article  CAS  PubMed  Google Scholar 

  53. Wulandari AP, Indry RR, Huspa DHP, Andayaningsih P (2018) Cytotoxicity of metabolites produced by endophytic fungus Cladosporium sp. isolated from marine macroalgae on in vitro MCF7, HELA, AND DU145 cell lines. Int J Pharm Pharm Sci 10:72–73. https://doi.org/10.22159/ijpps.2018v10i8.25181

    Article  CAS  Google Scholar 

  54. Bampidis V, Azimonti G, Bastos ML, Christensen H, Dusemund B, Durjava MF et al (2021) Safety and efficacy of the feed additive consisting of vitamin B2/riboflavin produced by Eremothecium ashbyi CCTCCM 2019833 for all animal species (Hubei Guangji Pharmaceutical Co., Ltd). EFSA J 19. https://doi.org/10.2903/j.efsa.2021.6462

  55. Boonyapranai K, Tungpradit R, Lhieochaiphant S, Phutrakul S (2008) Optimization of submerged culture for the production of naphthoquinones pigment by Fusarium verticillioides. Chiang Mai J Sci 35:457–466

    CAS  Google Scholar 

  56. Westphal KR, Wollenberg RD, Herbst FA, Sørensen JL, Sondergaard TE, Wimmer R (2018) Enhancing the production of the fungal pigment aurofusarin in Fusarium graminearum. Toxins (Basel) 10:1–11. https://doi.org/10.3390/toxins10110485

    Article  CAS  Google Scholar 

  57. Vujanovic V, Daida MA, Daida P (2017) qPCR assessment of aurofusarin gene expression in mycotoxigenic Fusarium species challenged with mycoparasitic and chemical control agents. Biol Control 109:51–57. https://doi.org/10.1016/j.biocontrol.2017.03.010

    Article  CAS  Google Scholar 

  58. Studt L, Wiemann P, Kleigrewe K, Humpf HU, Tudzynski B (2012) Biosynthesis of fusarubins accounts for pigmentation of Fusarium fujikuroi Perithecia. Appl Environ Microbiol 78:4468–4480. https://doi.org/10.1128/AEM.00823-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Limón MC, Rodríguez-Ortiz R, Avalos J (2010) Bikaverin production and applications. Appl Microbiol Biotechnol 87:21–29. https://doi.org/10.1007/s00253-010-2551-1

    Article  CAS  PubMed  Google Scholar 

  60. Santos MCD, Mendonça MDL, Bicas JL (2020) Modeling bikaverin production by Fusarium oxysporum CCT7620 in shake flask cultures. Bioresour Bioprocess 7:13

    Article  Google Scholar 

  61. Lebeau J, Petit T, Clerc P, Dufossé L, Caro Y (2019) Isolation of two novel purple naphthoquinone pigments concomitant with the bioactive red bikaverin and derivates thereof produced by Fusarium oxysporum. Biotechnol Prog 35:1–13. https://doi.org/10.1002/btpr.2738

    Article  CAS  Google Scholar 

  62. Avalos J, Prado-Cabrero A, Estrada AF (2012) Neurosporaxanthin production by Neurospora and Fusarium. Microb Carotenoids From Fungi 263–74. https://doi.org/10.1007/978-1-61779-918-1_18

  63. Hornero-Méndez D, Limón MC, Avalos J (2018) HPLC analysis of carotenoids in neurosporaxanthin-producing fungi. Microb Carotenoids 269–81. https://doi.org/10.1007/978-1-4939-8742-9_16

  64. Kjaer D, Kjaer A, Pederson C, Bu’Lock JD, Smith JR (1971) Bikaverin e norbikaverin, benzoxanthentrione pigments of Gibberella fujikuroi. J Chem Soc C Org 2792 – 2797. https://doi.org/10.1039/J39710002792

  65. Chatterjee S, Maity S, Chattopadhyay P, Sarkar A, Laskar S, Sen SK (2009) Characterization of red pigment from Monascus in submerged culture red pigment from Monascus purpureus. J Appl Sci Res 5:2102–2108

    CAS  Google Scholar 

  66. Chen D, Xue C, Chen M, Wu S, Li Z, Wang C (2016) Effects of blue light on pigment biosynthesis of Monascus. J Microbiol 54:305–310. https://doi.org/10.1007/s12275-016-6011-1

    Article  CAS  PubMed  Google Scholar 

  67. Jia L, Tu X, He K, Wang C, Yin S, Zhou Y et al (2019) Monascorubrin and rubropunctatin: preparation and reaction characteristics with amines. Dye Pigment 170:107629. https://doi.org/10.1016/j.dyepig.2019.107629

    Article  CAS  Google Scholar 

  68. Takahashi JA, Carvalho AS (2010) Nutritional potential of biomass and metabolites from filamentous fungi. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology 1126–1135

  69. Luiza T, Grigoletto B, Alberto L, Moraes BD, Abreu LM, Santos C et al (2016) Production and chemical characterization of pigments in filamentous fungi. Microbiology 162:12–22. https://doi.org/10.1099/mic.0.000168

    Article  CAS  Google Scholar 

  70. Lucas EMF, De Castro MCM, Takahashi JA (2007) Antimicrobial properties of sclerotiorin, isochromophilone VI and pencolide, metabolites from a Brazilian cerrado isolate of Penicillium sclerotiorum Van Beyma. Brazilian J Microbiol 38:785–789. https://doi.org/10.1590/S1517-83822007000400036

    Article  Google Scholar 

  71. Ratnaweera PB, Chandula WR, Jayasundera KU, Herath SD, Abira S, Williams DE et al (2018) Antibacterial activities of endophytic fungi isolated from six Sri Lankan plants of the family Cyperaceae. Bangladesh J Pharmacol 13:264–272. https://doi.org/10.3329/bjp.v13i3.36716

    Article  Google Scholar 

  72. Hausmann A, Sandmann G (2000) A single five-step desaturase is involved in the carotenoid biosynthesis pathway to β-carotene and torulene in Neurospora crassa. Fungal Genet Biol 30:147–153

    Article  CAS  Google Scholar 

  73. Schwechheimer SK, Park EY, Revuelta JL, Becker J, Wittmann C (2016) Biotechnology of riboflavin. Appl Microbiol Biotechnol 100:2107–2119. https://doi.org/10.1007/s00253-015-7256-z

    Article  CAS  PubMed  Google Scholar 

  74. Revuelta JL, Ledesma-Amaro R, Lozano-Martinez P, Díaz-Fernández D, Buey RM, Jiménez A (2017) Bioproduction of riboflavin: a bright yellow history. J Ind Microbiol Biotechnol 44:659–665. https://doi.org/10.1007/s10295-016-1842-7

    Article  CAS  PubMed  Google Scholar 

  75. Liu S, Hu W, Wang Z, Chen T (2020) Production of riboflavin and related cofactors by biotechnological processes. Microb Cell Fact 19:1–16. https://doi.org/10.1186/s12934-020-01302-7

    Article  CAS  Google Scholar 

  76. Aniceto C, De Souza CL, Fatibello-Filho O, Cavalheiro CCS (2000) Spectrophotometric determination of vitamin B2 (Riboflavin) in pharmaceutical formulations using flow injection analysis. Quim Nova 23:637–640. https://doi.org/10.1590/s0100-40422000000500013

    Article  CAS  Google Scholar 

  77. Pinto JT, Zempleni J (2016) Riboflavin. Adv Nutr 7:973–5. https://doi.org/10.3945/an.116.012716.973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mukherjee G, Mishra T, Deshmukh SK (2017) Fungal pigments: an overview. Dev Fungal Biol Appl Mycol 525–41. https://doi.org/10.1007/978-981-10-4768-8_26

  79. Akilandeswari P, Pradeep BV (2016) Exploration of industrially important pigments from soil fungi. Appl Microbiol Biotechnol 100:1631–1643. https://doi.org/10.1007/s00253-015-7231-8

    Article  CAS  PubMed  Google Scholar 

  80. Anugraha AC, Thomas T (2021) A review on pigment producing soil fungi and its applications 4:89–112. https://doi.org/10.5943/ajom/4/1/7

  81. Kumar A, Prajapati S, Nandan S, Neogi TG (2019) Industrially important pigments from different groups of fungi. Recent Adv. White Biotechnol. Through Fungi, Springer US p. 285–301. https://doi.org/10.1007/978-3-030-14846-1_10

  82. Mukherjee PK, Kenerley CM (2010) Regulation of morphogenesis and biocontrol properties in Trichoderma virens by a velvet protein. Vel 76:2345–2352. https://doi.org/10.1128/AEM.02391-09

    Article  CAS  Google Scholar 

  83. Kalra R, Conlan XA, Goel M (2020) Fungi as a potential source of pigments: harnessing filamentous fungi. Front Chem 8:1–23. https://doi.org/10.3389/fchem.2020.00369

    Article  CAS  Google Scholar 

  84. Ning ZQ, Cui H, Xu Y, Huang ZB, Tu Z, Li YP (2017) Deleting the citrinin biosynthesis-related gene, ctnE, to greatly reduce citrinin production in Monascus aurantiacus Li AS3.4384. Int J Food Microbiol 241:325–30. https://doi.org/10.1016/j.ijfoodmicro.2016.11.004

    Article  CAS  PubMed  Google Scholar 

  85. Lagashetti AC, Dufossé L, Singh SK, Singh PN (2019) Fungal pigments and their prospects in different industries. Microorganisms 7:1–36. https://doi.org/10.3390/microorganisms7120604

    Article  CAS  Google Scholar 

  86. Agboyibor C, Kong WB, Chen D, Zhang AM, Niu SQ (2018) Monascus pigments production, composition, bioactivity and its application: a review. Biocatal Agric Biotechnol 16:433–447. https://doi.org/10.1016/j.bcab.2018.09.012

    Article  Google Scholar 

  87. Nigam PS, Luke JS (2016) Food additives: production of microbial pigments and their antioxidant properties. Curr Opin Food Sci 7:93–100. https://doi.org/10.1016/j.cofs.2016.02.004

    Article  Google Scholar 

  88. Yuliana A, Singgih M, Julianti E, Blanc PJ (2017) Derivates of azaphilone Monascus pigments. Biocatal Agric Biotechnol 9:183–194. https://doi.org/10.1016/j.bcab.2016.12.014

    Article  Google Scholar 

  89. Chen G, Huang T, Bei Q, Tian X, Wu Z (2017) Correlation of pigment production with mycelium morphology in extractive fermentation of Monascus anka GIM 3.592. Process Biochem 58:42–50. https://doi.org/10.1016/j.procbio.2017.04.012

    Article  CAS  Google Scholar 

  90. Chen W, Feng Y, Molnár I, Chen F (2019) Nature and nurture: confluence of pathway determinism with metabolic and chemical serendipity diversifies: Monascus azaphilone pigments. Nat Prod Rep 36:561–572. https://doi.org/10.1039/c8np00060c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mostafa ME, Saad Abbady M (2014) Secondary metabolites and bioactivity of the Monascus pigments Review Article. Glob J Biotechnol Biochem 9:1–13. https://doi.org/10.5829/idosi.gjbb.2014.9.1.8268

    Article  CAS  Google Scholar 

  92. Lin CH, Lin TH, Pan TM (2017) Alleviation of metabolic syndrome by monascin and ankaflavin: the perspective of Monascus functional foods. Food Funct 2102–9. https://doi.org/10.1039/c7fo00406k

  93. NDI 855- Ankascin 568-R from Sunway Biotech Company, Ltd. https://www.regulations.gov/document?D=FDA-2015-S-0023-0004. Accessed 23 Mar 2022

  94. Indumathy K, Kannan KP (2019) Eco-benign fungal colorants: sources and applications in textiles. J Text Inst. https://doi.org/10.1080/00405000.2019.1634973

    Article  Google Scholar 

  95. Chen W, Chen R, Liu Q, He Y, He K, Ding X et al (2017) Orange, red, yellow: biosynthesis of azaphilone pigments in Monascus fungi. Chem Sci 8:4917–4925. https://doi.org/10.1039/c7sc00475c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Liu C, Hu B, Cheng Y, Guo Y, Yao W, Qian H (2021) Carotenoids from fungi and microalgae: a review on their recent production, extraction, and developments. Bioresour Technol 337:125398. https://doi.org/10.1016/j.biortech.2021.125398

    Article  CAS  PubMed  Google Scholar 

  97. Rapoport A, Guzhova I, Bernetti L, Buzzini P, Kieliszek M, Kot AM (2021) Carotenoids and some other pigments from fungi and yeasts. Metabolites 11:1–17. https://doi.org/10.3390/metabo11020092

    Article  CAS  Google Scholar 

  98. Maoka T (2020) Carotenoids as natural functional pigments. J Nat Med 74:1–16. https://doi.org/10.1007/s11418-019-01364-x

    Article  CAS  PubMed  Google Scholar 

  99. Rymbai H, Sharma RR, Srivastav MS (2011) Biocolorants and its implications in health and food industry – a review. Int J PharmTech Res 3:2228–2244

    CAS  Google Scholar 

  100. Narsing Rao MP, Xiao M, Li WJ (2017) Fungal and bacterial pigments: secondary metabolites with wide applications. Front Microbiol 8:1–13. https://doi.org/10.3389/fmicb.2017.01113

    Article  Google Scholar 

  101. Yang C, Zang L, Tsao R (2020) Chemistry and biochemistry of dietary carotenoids: bioaccessibility, bioavailability and bioactivities. J Food Bioact 10:32–46. https://doi.org/10.31665/jfb.2020.10225

    Article  Google Scholar 

  102. Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265. https://doi.org/10.1016/j.plipres.2003.10.002

    Article  CAS  PubMed  Google Scholar 

  103. Lin LJX (2020) Fungal pigments and their roles associated with human health. J Fungi 6:1–37. https://doi.org/10.3390/jof6040280

    Article  CAS  Google Scholar 

  104. Browning DF, Whitworth DE, Hodgson DA (2003) Light-induced carotenogenesis in Myxococcus xanthus : functional characterization of the ECF sigma factor CarQ and antisigma factor CarR. Mol Microbiol 48(1):237–25. https://doi.org/10.1046/j.1365-2958.2003.03431.x

    Article  CAS  PubMed  Google Scholar 

  105. Takano H, Obitsu S, Beppu T, Ueda K (2005) Light-induced carotenogenesis in Streptomyces coelicolor A3 (2): identification of an extracytoplasmic function sigma factor that directs photodependent transcription of the carotenoid biosynthesis gene cluster. J Bacteriol 187:1825–32. https://doi.org/10.1128/JB.187.5.1825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Avalos J, Pardo-Medina J, Parra-Rivero O, Ruger-Herreros M, Rodríguez-Ortiz R, Hornero-Méndez D et al (2017) Carotenoid biosynthesis in Fusarium. J Fungi 3. https://doi.org/10.3390/jof3030039

  107. Sánchez-Muñoz S, Mariano-Silva G, Leite MO, Mura FB, Verma ML, da Silva SS, Chandel AK (2020) Production of fungal and bacterial pigments and their applications. Biotechnol Prod Bioact Compd Elsevier 327–61. https://doi.org/10.1016/B978-0-444-64323-0.00011-4

  108. Parra-Rivero O, de Barros MP, del Prado MM, Gil JV, Hornero-Méndez D, Zacarías L et al (2020) Neurosporaxanthin overproduction by Fusarium fujikuroi and evaluation of its antioxidant properties. Antioxidants 9:1–18. https://doi.org/10.3390/antiox9060528

    Article  CAS  Google Scholar 

  109. Kim SK, Li YX (2012) Biological activities and health effects of terpenoids from marine fungi. Adv Food Nutr Res 65:409–413. https://doi.org/10.1016/B978-0-12-416003-3.00026-3

    Article  PubMed  Google Scholar 

  110. Du C, Li Y, Guo Y, Han M, Zhang W, Qian H (2016) The suppression of torulene and torularhodin treatment on the growth of PC-3 xenograft prostate tumors. Biochem Biophys Res Commun 469:1146–1152. https://doi.org/10.1016/j.bbrc.2015.12.112

    Article  CAS  PubMed  Google Scholar 

  111. Du C, Guo Y, Cheng Y, Han M, Zhang W, Qian H (2017) Anti-cancer effects of torulene, isolated from Sporidiobolus pararoseus, on human prostate cancer LNCaP and PC-3 cells via a mitochondrial signal pathway and the down-regulation of AR expression. RSC Adv 7:2466–2474. https://doi.org/10.1039/C6RA24721K

    Article  CAS  Google Scholar 

  112. Kot AM, Błazejak S, Gientka I, Kieliszek M, Bryś J (2018) Torulene and torularhodin: “new” fungal carotenoids for industry? Microb Cell Fact 17:1–14. https://doi.org/10.1186/s12934-018-0893-z

    Article  CAS  Google Scholar 

  113. Dimitrova S, Pavlova K, Lukanov L, Korotkova E, Petrova E, Zagorchev P et al (2013) Production of metabolites with antioxidant and emulsifying properties by antarctic strain Sporobolomyces salmonicolor AL1. Appl Biochem Biotechnol 169:301–311. https://doi.org/10.1007/s12010-012-9983-2

    Article  CAS  PubMed  Google Scholar 

  114. Zoz L, Carvalho JC, Soccol VT, Casagrande TC, Cardoso L (2015) Torularhodin and torulene: bioproduction, properties and prospective applications in food and cosmetics – a review. Brazilian Arch Biol Technol 58:278–288. https://doi.org/10.1590/S1516-8913201400152

    Article  CAS  Google Scholar 

  115. Chakraborty S, Ghosh U, Chakraborty S (2010) Fungi: its importance in biotechnology – a review on its past, present and future prospects. J Pharm Res 3:3059–3060

    Google Scholar 

  116. Jr NP, Bon EPS, Ferrara MA (2008) Tecnologia de bioprocessos. Séries em Biotecnologia v.1. Rio de Janeiro, Escola de Química, pp 62

  117. Pandey A (2003) Solid-state fermentation. Biochem Eng J 13:81–84. https://doi.org/10.1016/S1369-703X(02)00121-3

    Article  CAS  Google Scholar 

  118. Velmurugan P, Hur H, Balachandar V, Kamala-kannan S, Lee K, Lee S et al (2011) Monascus pigment production by solid-state fermentation with corn cob substrate. J Biosc 112:590–594. https://doi.org/10.1016/j.jbiosc.2011.08.009

    Article  CAS  Google Scholar 

  119. Meinicke R (2008) Estudo da produção de pigmentos por Monascus ruber CCT 3802 utilizando glicerol como substrato em cultivo submerso. Dissertação, Universidade Federal de Santa Catarina

  120. Carvalho JCM, Matsudo MC, Bezerra RP, Sato S (2015) Tecnologia de fermentações. Biotecnologia Farmacêutica: Aspectos sobre aplicação industrial. São Paulo, BlucherFarm, pp 111–112

    Google Scholar 

  121. Sen R, Swaminathan T (2004) Response surface modeling and optimization to elucidate and analyze the effects of inoculum age and size on surfactin production. Biochem Eng J 21:141–8. https://doi.org/10.1016/j.bej.2004.06.006

    Article  CAS  Google Scholar 

  122. Ogbonna CN (2016) Production of food colourants by filamentous fungi. African J Microbiol Res 10:960–971. https://doi.org/10.5897/ajmr2016.7904

    Article  CAS  Google Scholar 

  123. Lucas EMF, Machado Y, Ferreira AA, Dolabella MP, Takahashi JÁ (2010) Improved production of pharmacologically-active sclerotiorin by Penicillium sclerotiorum. Trop J Pharm Res 9(4):365–371

    Article  CAS  Google Scholar 

  124. Velmurugan P, Lee YH, Venil CK, Lakshmanaperumalsamy P, Chae J, Oh B (2010) Effect of light on growth, intracellular and extracellular pigment production by five pigment-producing filamentous fungi in synthetic medium. J Biosc 109:346–350. https://doi.org/10.1016/j.jbiosc.2009.10.003

    Article  CAS  Google Scholar 

  125. Hailei W, Ping L, Yufeng L (2012) Overproduction of a potential red pigment by a specific self-immobilization biomembrane-surface liquid culture of Penicillium novae-zeelandiae 1407–16. https://doi.org/10.1007/s00449-012-0729-x

  126. Pradeep FS, Begam MS, Palaniswamy M, Pradeep B V (2013) Influence of culture media on growth and pigment production by Fusarium moniliforme KUMBF1201 isolated from paddy field soil 22:70–7. https://doi.org/10.5829/idosi.wasj.2013.22.01.7265

  127. Celestino JDR, Carvalho LE, Lima MDP, Lima AM, Ogusku MM, Souza JVB (2014) Bioprospecting of amazon soil fungi with the potential for pigment production. Process Biochem 49:569–575. https://doi.org/10.1016/j.procbio.2014.01.018

    Article  CAS  Google Scholar 

  128. Santos-Ebinuma VC, Roberto IC, Francisca M, Teixeira S, Pessoa A Jr et al (2014) Improvement of submerged culture conditions to produce colorants by Penicillium purpurogenum. Braz J Microbiol 742:731–42

    Article  Google Scholar 

  129. Sehrawat R, Panesar PS, Swer TL, Kumar A (2017) Response surface methodology (RSM) mediated interaction of media concentration and process parameters for the pigment production by Monascus purpureus MTCC 369 under solid state fermentation. Pigment Resin Technol 46:14–20. https://doi.org/10.1108/PRT-08-2015-0077

    Article  CAS  Google Scholar 

  130. Kantifedaki A, Kachrimanidou V, Mallouchos A, Papanikolaou S, Koutinas AA (2018) Orange processing waste valorisation for the production of bio-based pigments using the fungal strains Monascus purpureus and Penicillium purpurogenum. J Clean Prod 185:882–890. https://doi.org/10.1016/j.jclepro.2018.03.032

    Article  CAS  Google Scholar 

  131. Pandey N, Jain R, Pandey A, Tamta S (2018) Optimisation and characterisation of the orange pigment produced by a cold adapted strain of Penicillium sp. (GBPI_P155) isolated from mountain ecosystem. Mycology 9:81–92. https://doi.org/10.1080/21501203.2017.1423127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Oliveira F, Pedrolli DB, Francisca M, Teixeira SV (2019) Water-soluble fluorescent red colorant production by Talaromyces amestolkiae 6529–41. https://doi.org/10.1007/s00253-019-09972-z

  133. Venkatachalam M, Shum-Chéong-sing A, Dufossé L, Fouillaud M (2020) Statistical optimization of the physico-chemical parameters for pigment production in submerged fermentation of Talaromyces albobiverticillius 30548. Microorganisms 8. https://doi.org/10.3390/microorganisms8050711

  134. Molelekoa TBJ, Regnier T, da Silva LS, Augustyn W (2021) Production of pigments by filamentous fungi cultured on agro-industrial by-products using submerged and solid-state fermentation methods. Fermentation 7. https://doi.org/10.3390/fermentation7040295

  135. Prajapati VS, Soni N, Trivedi UB, Patel KC (2014) Biocatalysis and agricultural biotechnology an enhancement of red pigment production by submerged culture of Monascus purpureus MTCC 410 employing statistical methodology. Biocatal Agric Biotechnol 3:140–145. https://doi.org/10.1016/j.bcab.2013.08.008

    Article  Google Scholar 

  136. Sutthiwong N, Fouillaud M, Valla A, Caro Y, Dufossé L (2014) Bacteria belonging to the extremely versatile genus Arthrobacter as novel source of natural pigments with extended hue range. FRIN 65:156–162. https://doi.org/10.1016/j.foodres.2014.06.024

    Article  CAS  Google Scholar 

  137. Lebeau J, Venkatachalam M, Fouillaud M, Petit T, Vinale F, Dufossé L et al (2017) Production and new extraction method of polyketide red pigments produced by ascomycetous fungi from terrestrial and marine habitats. J Fungi 3. https://doi.org/10.3390/jof3030034

  138. Narendrababu B, Shishupala S (2017) Spectrophotometric detection of pigments from Aspergillus and Penicillium isolates. J Appl Biol Biotechnol 5:053–058. https://doi.org/10.7324/jabb.2017.50109

    Article  CAS  Google Scholar 

  139. Ring LC, Yenn TW, Nazri NI, Nee TW, Zahan KA, Ibrahim D et al (2018) Chemical optimization of red pigment, Monascorubin production in Penicillium minioluteum ED24 using solid-state fermentation. Arab J Sci Eng 43:3485–3491. https://doi.org/10.1007/s13369-018-3182-6

    Article  CAS  Google Scholar 

  140. Padmapriya C, Murugesan R (2016) Characterization of methanolic extract of red pigment from Penicillium purpurogenum and its antioxidant activity. J Pure Appl Microbiol 10:1505–1510

    CAS  Google Scholar 

  141. Kallingal A, Ayyolath A, Thachan Kundil V, Joseph TM, Chandra DN, Haponiuk JT et al (2021) Extraction and optimization of Penicillium sclerotiorum strain AK-1 pigment for fabric dyeing. J Basic Microbiol. https://doi.org/10.1002/jobm.202100349

    Article  PubMed  Google Scholar 

  142. Hernández VA, Machuca Á, Saavedra I, Chavez D, Astuya A, Barriga C (2019) Talaromyces australis and Penicillium murcianum pigment production in optimized liquid cultures and evaluation of their cytotoxicity in textile applications. World J Microbiol Biotechnol 35:1–9. https://doi.org/10.1007/s11274-019-2738-2

    Article  CAS  Google Scholar 

  143. Heo YM, Kim K, Kwon SL, Na J, Lee H, Jang S et al (2018) Investigation of filamentous fungi producing safe, functional water-soluble pigments. Mycobiology 46:269–277. https://doi.org/10.1080/12298093.2018.1513114

    Article  PubMed  PubMed Central  Google Scholar 

  144. Chadni Z, Rahaman MH, Jerin I, Hoque KMF, Reza MA (2017) Extraction and optimisation of red pigment production as secondary metabolites from Talaromyces verruculosus and its potential use in textile industries. Mycology 8:48–57. https://doi.org/10.1080/21501203.2017.1302013

    Article  CAS  Google Scholar 

  145. Butnariu M (2016) Methods of analysis (extraction, separation, identification and quantification) of carotenoids from natural products. J Ecosyst Ecography 6. https://doi.org/10.4172/2157-7625.1000193

  146. Ewing G (1972) Métodos Instrumentais de Análise Química, 1ª. Universidade de São Paulo, Bluche

    Google Scholar 

  147. Andersen QM, Francis G (2018) Techniques of pigment identification. Annu Plant Rev Online 14:293–341

    Article  Google Scholar 

  148. Harbone JB (1998) Phytochemical methods: a guide to modern techniques of plant analysis, 5th edn. Chapman and Hall Ltd, London, pp 21–72

    Google Scholar 

  149. Cretu R, Bahrim G, Stefan D, Olteanu M (2008) Evaluation of physical and chemical characteristics of yellow colorant produced by Epicoccum nigrum MIUG 2.15 in crude extracts and emulsions. Roum Biotechnol Lett 13:59–68

    CAS  Google Scholar 

  150. Trisuwan K, Rukachaisirikul V, Borwornwiriyapan K (2013) Pyrone derivatives from the soil fungus Fusarium solani PSU-RSPG37. Phytochem Lett 6:495–497. https://doi.org/10.1016/j.phytol.2013.06.008

    Article  CAS  Google Scholar 

  151. Medentsev AG, Arinbasarova AY, Akimenko VK (2005) Biosynthesis of Naphthoquinone pigments by fungi of the genus Fusarium. Appl Biochem Microbiol 41(5):503–7. https://doi.org/10.1007/s10438-005-0091-8

    Article  CAS  Google Scholar 

  152. Hamano PS, Kilikian BV (2006) Production of red pigments by Monascus ruber in culture media containing corn steep liquor. Brazilian J Chem Eng 23:443–449

    Article  CAS  Google Scholar 

  153. Dufossé L (2006) Microbial production of food grade pigments microbial production of food grade pigments. Food Technol Biotechnol 44(3):313–321

    Google Scholar 

  154. Sardaryan E (2004) Food supplement US Patent 0105864 A1

  155. Navarro E, Lorca-Pascual J, Quiles-Rosillo M, Nicolás F, Garre V, Torres-Martínez S et al (2001) A negative regulator of light-inducible carotenogenesis in mucor circinelloides. Mol Genet Genomics 266:463–470. https://doi.org/10.1007/s004380100558

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

We would like to thank Fundação de Amparo à Pesquisa do Estado do Amazonas (FAPEAM) for the funding of the research by Luciana Aires de Oliveira under the Universal Call FAPEAM-006/2019 and for the POSGRAD 2021 grant. All the authors also thank the other funding agencies involved: CNPq, CAPES, and FINEP. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the article’s conception and design. Luciana Aires de Oliveira e João Vicente Braga de Souza had the idea for the article. Luciana Aires de Oliveira, Walter Oliva Pinto Filho Segundo, and Eldrinei Gomes Peres performed the literature search and data analysis. Luciana Aires de Oliveira wrote the first draft of the manuscript. Hector Henrique Ferreira Koolen critically revised the work. Luciana Aires de Oliveira, João Vicente Braga de Souza, and Eldrinei Gomes Peres wrote the later and final drafts, and all the authors read and approved the final manuscript.

Corresponding author

Correspondence to João Vicente Braga de Souza.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Melissa Fontes Landell

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, L.A., Segundo, W.O.P.F., de Souza, É.S. et al. Ascomycota as a source of natural colorants. Braz J Microbiol 53, 1199–1220 (2022). https://doi.org/10.1007/s42770-022-00768-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00768-4

Keywords

Navigation