Skip to main content
Log in

Arch-Bridge Photothermal Fabric with Efficient Warp-Direction Water Paths for Continuous Solar Desalination

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

The interfacial solar evaporator is a key technology for eco-friendly desalination, playing a crucial role in alleviating the global water scarcity crisis. However, limitation of photothermal water evaporation efficiency persists due to inadequate water transfer at the water-steam interface. Herein, we present a new type of scalable and recyclable arch bridge photothermal fabric with efficient warp-direction water paths by a convenient shuttle-flying weaving technique. Compared to the previous overall layer-by-layer assembled fabric, our photothermal fabric precisely constructed effective water paths and achieved excellent water-heat distribution at the solar evaporation interface, which greatly improved the photothermal conversion efficiency and evaporation rate. By the design of the weaving process, the photothermal fabric shows a new interface contact mode of the water path fiber and polyaniline photothermal fiber. Besides, the arch-bridge type design not only minimizes heat loss area but also enhances the water evaporation area, resulting in high-efficiency all-weather available solar water evaporation. Furthermore, the results show that the temperature, evaporation rate and solar-vapor conversion efficiency of photothermal fabric can reach above 123 ℃, 2.31 kg m−2 h−1 and 99.93% under a solar illumination of 1 kW m−2. The arch-bridge photothermal fabric with an excellent water evaporation rate has been successfully established, which provides a new paradigm for improving the sustainable seawater desalination rate.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Scanlon BR, Fakhreddine S, Rateb A, de Graaf I, Famiglietti J, Gleeson T, Grafton RQ, Jobbagy E, Kebede S, Kolusu SR. Global water resources and the role of groundwater in a resilient water future. Nat Rev Earth Environ. 2023;4:87.

    Article  Google Scholar 

  2. Mekonnen MM, Hoekstra AY. Four billion people facing severe water scarcity. Sci Adv. 2016;2: e1500323.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rodell M, Famiglietti JS, Wiese DN, Reager J, Beaudoing HK, Landerer FW, Lo M-H. Emerging trends in global freshwater availability. Nature. 2018;557:651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lu T, Cao W, Liang H, Deng Y, Zhang Y, Zhu M, Ma W, Xiong R, Huang C. Blow-Spun nanofibrous membrane for simultaneous treatment of emulsified oil/water mixtures, dyes, and bacteria. Langmuir. 2022;38:15729.

    Article  CAS  PubMed  Google Scholar 

  5. Elimelech M, Phillip WA. The future of seawater desalination: energy, technology, and the environment. Science. 2011;333:712.

    Article  CAS  PubMed  Google Scholar 

  6. Trejo González JA, Araoz ME, Herrera JP, Avila AM. Scalable and renewable electromembrane contactors for freshwater recovery through membrane distillation. Ind Eng Chem Res. 2022;61:5493.

    Article  Google Scholar 

  7. Shocron AN, Roth RS, Guyes EN, Epsztein R, Suss ME. Comparison of ion selectivity in electrodialysis and capacitive deionization. Environ Sci Technol Lett. 2022;9:889.

    Article  CAS  Google Scholar 

  8. Al-Abri M, Al-Ghafri B, Bora T, Dobretsov S, Dutta J, Castelletto S, Rosa L, Boretti A. Chlorination disadvantages and alternative routes for biofouling control in reverse osmosis desalination. NPJ Clean Water. 2019;2:2.

    Article  CAS  Google Scholar 

  9. Malato S, Fernández-Ibáñez P, Maldonado MI, Blanco J, Gernjak W. Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today. 2009;147:1.

    Article  CAS  Google Scholar 

  10. Chang J, Zhang L, Wang P. Intelligent environmental nanomaterials. Environ Sci Nano. 2018;5:811.

    Article  CAS  Google Scholar 

  11. Wang Y, Sun X, Tao S. Rational 3D coiled morphology for efficient solar-driven desalination. Environ Sci Technol. 2020;54:16240.

    Article  CAS  PubMed  Google Scholar 

  12. Kaur M, Nagao T. Minireview on solar desalination and hydropower generation by water evaporation: recent challenges and perspectives in materials science. Energy Fuels. 2022;36:11443.

    Article  CAS  Google Scholar 

  13. Li Z, Xu X, Sheng X, Lin P, Tang J, Pan L, Kaneti YV, Yang T, Yamauchi Y. Solar-powered sustainable water production: state-of-the-art technologies for sunlight–energy–water nexus. ACS Nano. 2021;15:12535.

    Article  CAS  PubMed  Google Scholar 

  14. Zhou X, Zhao F, Zhang P, Yu G. Solar water evaporation toward water purification and beyond. ACS Mater Lett. 2021;3:1112.

    Article  CAS  Google Scholar 

  15. Zhao F, Guo Y, Zhou X, Shi W, Yu G. Materials for solar-powered water evaporation. Nat Rev Mater. 2020;5:388.

    Article  Google Scholar 

  16. Setyawan H, Juliananda J, Widiyastuti W. Engineering materials to enhance light-to-heat conversion for efficient solar water purification. Ind Eng Chem Res. 2022;61:17783.

    Article  CAS  Google Scholar 

  17. Zhou L, Li X, Ni GW, Zhu S, Zhu J. The revival of thermal utilization from the Sun: interfacial solar vapor generation. Natl Sci Rev. 2019;6:562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu X, Wu L, Tan J, Chen GY, Owens G, Xu H. Evaporation above a bulk water surface using an oil lamp inspired highly efficient solar-steam generation strategy. J Mater Chem A. 2018;6:12267.

    Article  CAS  Google Scholar 

  19. Gao M, Zhu L, Peh CK, Ho GW. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ Sci. 2019;12:841.

    Article  CAS  Google Scholar 

  20. Zhu L, Gao M, Peh CKN, Ho GW. Recent progress in solar-driven interfacial water evaporation: advanced designs and applications. Nano Energy. 2019;57:507.

    Article  CAS  Google Scholar 

  21. Tao P, Ni G, Song C, Shang W, Wu J, Zhu J, Chen G, Deng T. Solar-driven interfacial evaporation. Nat Energy. 2018;3:1031.

    Article  Google Scholar 

  22. Zhao W, Gong H, Song Y, Li B, Xu N, Min X, Liu G, Zhu B, Zhou L, Zhang XX. Hierarchically designed salt-resistant solar evaporator based on donnan effect for stable and high-performance brine treatment. Adv Funct Mater. 2021;31:2100025.

    Article  CAS  Google Scholar 

  23. Min X, Zhu B, Li B, Li J, Zhu J. Interfacial solar vapor generation: materials and structural design. Acc Mater Res. 2021;2:198.

    Article  CAS  Google Scholar 

  24. Ge C, Xu D, Du H, Chen Z, Chen J, Shen Z, Xu W, Zhang Q, Fang J. Recent advances in fibrous materials for interfacial solar steam generation. Adv Fiber Mater. 2023;5:791.

    Article  CAS  Google Scholar 

  25. Liu Y, Chen J, Guo D, Cao M, Jiang L. Floatable, self-cleaning, and carbon-black-based superhydrophobic gauze for the solar evaporation enhancement at the air-water interface. ACS Appl Mater Interfaces. 2015;7:13645.

    Article  CAS  PubMed  Google Scholar 

  26. Liu Z, Wu B, Zhu B, Chen Z, Zhu M, Liu X. Continuously producing watersteam and concentrated brine from seawater by hanging photothermal fabrics under sunlight. Adv Funct Mater. 2019;29:1905485.

    Article  CAS  Google Scholar 

  27. Li X, Xu W, Tang M, Zhou L, Zhu B, Zhu S, Zhu J. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc Natl Acad Sci. 2016;113:13953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao F, Zhou X, Shi Y, Qian X, Alexander M, Zhao X, Mendez S, Yang R, Qu L, Yu G. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat Nanotechnol. 2018;13:489.

    Article  CAS  PubMed  Google Scholar 

  29. Liu H, Chen C, Chen G, Kuang Y, Zhao X, Song J, Jia C, Xu X, Hitz E, Xie H. High-performance solar steam device with layered channels: artificial tree with a reversed design. Adv Energy Mater. 2018;8:1701616.

    Article  Google Scholar 

  30. Qi Q, Wang Y, Wang W, Ding X, Yu D. High-efficiency solar evaporator prepared by one-step carbon nanotubes loading on cotton fabric toward water purification. Sci Total Environ. 2020;698: 134136.

    Article  CAS  PubMed  Google Scholar 

  31. Kaur M, Ishii S, Shinde SL, Nagao T. All-ceramic solar-driven water purifier based on anodized aluminum oxide and plasmonic titanium nitride. Adv Sustainable Syst. 2019;3:1800112.

    Article  Google Scholar 

  32. Li S, Li Y, Shao Y, Wang W. Emerging two-dimensional materials constructed nanofluidic fiber: properties, preparation and applications. Adv Fiber Mater. 2021;4:129.

    Article  Google Scholar 

  33. Ma W, Lu T, Cao W, Xiong R, Huang C. Bioinspired Nanofibrous Aerogel with Vertically Aligned Channels for Efficient Water Purification and Salt-Rejecting Solar Desalination. Adv Funct Mater. 2023;33:2214157.

    Article  CAS  Google Scholar 

  34. Liu Z, Zhou Z, Wu N, Zhang R, Zhu B, Jin H, Zhang Y, Zhu M, Chen Z. Hierarchical photothermal fabrics with low evaporation enthalpy as heliotropic evaporators for efficient, continuous, salt-free desalination. ACS Nano. 2021;15:13007.

    Article  CAS  PubMed  Google Scholar 

  35. Li W, Li Z, Bertelsmann K, Fan DE. Portable low-pressure solar steaming-collection unisystem with polypyrrole origamis. Adv Mater. 2019;31:1900720.

    Article  Google Scholar 

  36. Zhang Q, Xiao X, Zhao G, Yang H, Cheng H, Qu L, Xu W, Wang X. An all-in-one and scalable carbon fibre-based evaporator by using the weaving craft for high-efficiency and stable solar desalination. J Mater Chem A. 2021;9:10945.

    Article  CAS  Google Scholar 

  37. Meng X, Xu W, Li Z, Yang J, Zhao J, Zou X, Sun Y, Dai Y. Coupling of hierarchical Al2O3/TiO2 nanofibers into 3D photothermal aerogels toward simultaneous water evaporation and purification. Adv Fiber Mater. 2020;2:93.

    Article  CAS  Google Scholar 

  38. Chong W, Meng R, Liu Z, Liu Q, Hu J, Zhu B, Macharia DK, Chen Z, Zhang L. Superhydrophilic polydopamine-modified carbon-fiber membrane with rapid seawater-transferring ability for constructing efficient hanging-model evaporator. Adv Fiber Mater. 2023;5:1063.

    Article  CAS  Google Scholar 

  39. Chen L, Ren J, Gong J, Qu J, Niu R. Cost-effective, scalable fabrication of self-floating xerogel foam for simultaneous photothermal water evaporation and thermoelectric power generation. Chem Eng J. 2023;454: 140383.

    Article  CAS  Google Scholar 

  40. Jia S, Hao L, Liu Y, Lin E, Liu W, Yang Y, Tian Y, Peng Y, Cheng P, Chen Y. Freestanding hydrophilic/hydrophobic Janus covalent organic framework membranes for highly efficient solar steam generation. ACS Mater Lett. 2023;5:458.

    Article  CAS  Google Scholar 

  41. Luo Y, Song F, Wang X, Wang Y. Water bridge solar evaporator with salt-resistance and heat localization for efficient desalination. J Mater Chem A. 2023;11:3118.

    Article  CAS  Google Scholar 

  42. Liu C, Deng D, Xiao Z. A novel suspended suspension bridge-like evaporator with antibacterial properties for achieving stable solar evaporation in concentrated saline water. Desalination. 2024;574: 117223.

    Article  CAS  Google Scholar 

  43. Xu T, Wang Y, Chen X, Liu M, Liu J, Jia T, Zhao X. A three-dimensional arched solar evaporator based on hydrophilic photothermal fibers inspired by hair for eliminating salt accumulation with desalination application. J Mater Chem A. 2022;10:21004.

    Article  CAS  Google Scholar 

  44. Choi J, Lee H, Sohn B, Song M, Jeon S. Highly efficient evaporative cooling by all-day water evaporation using hierarchically porous biomass. Sci Rep. 2021;11:16811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang Y, Qi Q, Fan J, Wang W, Yu D. Simple and robust MXene/carbon nanotubes/cotton fabrics for textile wastewater purification via solar-driven interfacial water evaporation. Sep Purif Technol. 2021;254: 117615.

    Article  CAS  Google Scholar 

  46. Xiao W, Yan J, Gao S, Huang X, Luo J, Wang L, Zhang S, Wu Z, Lai X, Gao J. Superhydrophobic MXene based fabric composite for high efficiency solar desalination. Desalination. 2022;524: 115475.

    Article  CAS  Google Scholar 

  47. Javed M, Sui Y, Nawaz MZ, Wang Y, ji Y, Cai Z, Xu B. Integrated multi-layered fabric with tunable water supply to the photothermal conversion layer for an efficient solar water evaporation. ACS ES&T Water. 2022;2:873.

    Article  CAS  Google Scholar 

  48. Tong D, Song B. A high-efficient and ultra-strong interfacial solar evaporator based on carbon-fiber fabric for seawater and wastewater purification. Desalination. 2022;527: 115586.

    Article  CAS  Google Scholar 

  49. Tian Y, Li Y, Zhang X, Jia J, Yang X, Yang S, Yu J, Wu D, Wang X, Gao T. Breath-figure self-assembled low-cost Janus fabrics for highly efficient and stable solar desalination. Adv Funct Mater. 2022;32:2113258.

    Article  CAS  Google Scholar 

  50. Fang Q, Li T, Lin H, Jiang R, Liu F. Highly efficient solar steam generation from activated carbon fiber cloth with matching water supply and durable fouling resistance. ACS Appl Energy Mater. 2019;2:4354.

    Article  CAS  Google Scholar 

  51. Lin K-T, Lin H, Yang T, Jia B. Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion. Nat Commun. 2020;11:1389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shi L, Shi Y, Li R, Chang J, Zaouri N, Ahmed E, Jin Y, Zhang C, Zhuo S, Wang P. SiC–C composite as a highly stable and easily regenerable photothermal material for practical water evaporation. ACS Sustain Chem Eng. 2018;6:8192.

    Article  CAS  Google Scholar 

  53. Wang X, Gan Q, Chen R, Peng H, Zhang T, Ye M. Water delivery channel design in solar evaporator for efficient and durable water evaporation with salt rejection. ACS Sustain Chem Eng. 2020;8:7753.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research was supported by the Research Initiated Project of Chengdu University (2081921027); the Key Laboratory of Materials and Surface Technology, Ministry of Education (NO.xxx-2023-yb010); the Bureau of Science & Technology and Intellectual Property Nanchong City (22SXZRKX0017), and the North Sichuan Medical College (CBY22-ZDA07, CBY21-QD-04); National Natural Science Foundation of China (52205182).

Author information

Authors and Affiliations

Authors

Contributions

YXY and DYW: Writing – original draft, Investigation, Data curation, Visualization. WXL, HYZ, YJW and LXL: Data curation, Visualization. WF, JX and HBC: Investigation, Visualization. JQC, YYH and YYZ: Investigation, Data curation. PW and JL: Data curation. MCG: Project administration. HZ: Project administration, Supervision, Writing – review & editing. XF: Visualization, Writing – review & editing.

Corresponding authors

Correspondence to Yuxin Yang, Huang Zhou or Xing Fan.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9132 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Wang, D., Liao, W. et al. Arch-Bridge Photothermal Fabric with Efficient Warp-Direction Water Paths for Continuous Solar Desalination. Adv. Fiber Mater. (2024). https://doi.org/10.1007/s42765-024-00392-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42765-024-00392-x

Keywords

Navigation