Skip to main content
Log in

Emerging Two-dimensional Materials Constructed Nanofluidic Fiber: Properties, Preparation and Applications

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

By virtue of ultra-flexibility and non-inductive feature, fibrous electrode is an ideal platform for constructing wearable electronics and implantable electrodes for medical therapy. 2D nanofluidic channels with tailored ion transport dynamics enable minimized charge transfer resistance and efficient ion transport capability. Thus, combining the nanofluidic ion transport features and fibrous electrode advantages, 2D nanofluidic fiber electrode presents a series of extra advantages of unidirectional efficient ion transport and great biofriendliness. In this minireview, we first elaborate the architecture characteristics of the emerging 2D nanofluidic fibers and highlight the intriguing features, such as tunable interlayer spacing, efficient ion transport and modifiable channel surface. Conventional strategies for constructing 2D nanofluidic fibers have been systematically enumerated, including solvent volatilizing regulation, confinement triggered alignment, and flow-driven orientation. In addition, the promising applications of 2D nanofluidic fibers have been also summarized as well. Finally, we analyze the challenges and perspectives of fibrous 2D nanofluidic construction, ion transport mechanism study and potential application extension.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright 2020, Springer Nature Limited; Reproduced with permission [45]

Fig. 2

Copyright 2013, American Association for the Advancement of Science; Reproduced with permission [52]. b Schematic diagram illustrating the production of EGM-GO films from an aqueous dispersion with a tunable precursor ratio of GO to EG. c X-ray diffraction curves of the hybrid EGM-GO films, showing that the interlayer distance is controllable with the relative EG weight ratio. Copyright 2020, Springer Nature Limited; Reproduced with permission [54]. d Interlayer spacing (d) changing via adjusting humidity. The inset image demonstrated the relative X-ray diffraction patterns. Copyright 2017, Springer Nature Limited; Reproduced with permission [55]

Fig. 3

Copyright 2016, American Association for the Advancement of Science; Reproduced with permission [32]. c Ionic conductance summary of varied channel depths h of 1015 or 70 nm. The solid line depicts the conductance expected in each channel from bulk solution conductivity to illustrate the ionic conductivity difference at low KCl concentration range. Copyright 2004, American Physical Society; Reproduced with permission [11]. d Ionic conductivity cycling stability after a long ion/water permeation cycle along the 2D nanofluidic longitudinal direction. Copyright 2020, Elsevier B.V.; Reproduced with permission [39]

Fig. 4

Copyright 2018, John Wiley & Sons; Reproduced with permission [70]. c Covalently grafting negatively charged GO colloids (n-GO) prior to assembly yields positively charged GO (p-GO) building blocks. d Representative current–voltage curves responses for n-GOM and p-GOM obtained in 10 mM KCl electrolyte, which demonstrate that the surface charge modification can significantly change the ionic transport behavior. Copyright 2017, John Wiley & Sons; Reproduced with permission [71]

Fig. 5

Copyright 2020, National Academy of Sciences; Reproduced with permission [76]

Fig. 6

Copyright 2013, American Association for the Advancement of Science; Reproduced with permission [80]. g Preparation process of high orientation nanofluidic MXene fibers. h Ionic conductivity of three different MXene fibers (N-round, N-flat, and O-flat) obtained at 1 mM KCl concentration. i Ionic conductivity summary of three different MXene fibers while KCl electrolyte varied from 1.0 M to 1.0 μM. Copyright 2021, American Chemical Society; Reproduced with permission [43]

Fig. 7

Copyright 2018, American Association for the Advancement of Science; Reproduced with permission [38]. d Schematic illustration of the flake arrangement variation during the plasticizing and stretching process of graphene fibers. Copyright 2020, John Wiley & Sons; Reproduced with permission [87]. e Tensile strength curve and f electrical conductivity summary of MXene fibers at different drawing speeds. Copyright 2021, American Chemical Society; Reproduced with permission [88]

Fig. 8

Copyright 2021, American Chemical Society; Reproduced with permission [43]. d Schematics demonstrate the stacking configuration of multilevel GO flakes and graphene quantum dots (GQDs) within the nanocarbon material hybrid fiber. e Effect of the content of graphene quantum dots on the ionic conductivity of nanochannel. Copyright 2019, Royal Society of Chemistry; Reproduced with permission [101]. f Ionic current variation at different applied voltage to depict osmotic pressure power generation in GO fiber constructed nanochannels. Copyright 2020, Elsevier B.V.; Reproduced with permission [39]

Fig. 9

Copyright 2020, Elsevier B.V.; Reproduced with permission [105]. d Photograph of a spring GO electrode integrated on the sciatic nerve of a bullfrog. e Schematic diagram of fiber neutral electrode for recording nerve signals in bullfrog. Copyright 2020, National Academy of Sciences; Reproduced with permission [76]

Similar content being viewed by others

References

  1. Feng J, Liu K, Bulushev RD, Khlybov S, Dumcenco D, Kis A, Radenovic A. Identification of single nucleotides in MoS2 nanopores. Nat Nanotechnol 2015;10:1070.

    Article  CAS  Google Scholar 

  2. Tunuguntla RH, Allen FI, Kim K, Belliveau A, Noy A. Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins. Nat Nanotechnol 2016;11:639.

    Article  CAS  Google Scholar 

  3. Plesa C, Verschueren D, Pud S, van der Torre J, Ruitenberg JW, Witteveen MJ, Jonsson MP, Grosberg AY, Rabin Y, Dekker C. Direct observation of DNA knots using a solid-state nanopore. Nat Nanotechnol 2016;11:1093.

    Article  CAS  Google Scholar 

  4. Cayre OJ, Chang ST, Velev OD. Polyelectrolyte diode: nonlinear current response of a junction between aqueous ionic gels. J Am Chem Soc 2007;129:10801.

    Article  CAS  Google Scholar 

  5. Kalman EB, Vlassiouk I, Siwy ZS. Nanofluidic bipolar transistors. Adv Mater 2008;20:293.

    Article  CAS  Google Scholar 

  6. Yan R, Liang W, Fan R, Yang P. Nanofluidic diodes based on nanotube heterojunctions. Nano Lett 2009;9:3820.

    Article  CAS  Google Scholar 

  7. Kneller AR, Haywood DG, Jacobson SC. AC electroosmotic pumping in nanofluidic funnels. Anal Chem 2016;88:6390.

    Article  CAS  Google Scholar 

  8. Perez-Mitta G, Albesa AG, Trautmann C, Toimil-Molares ME, Azzaroni O. Bioinspired integrated nanosystems based on solid-state nanopores: “iontronic” transduction of biological, chemical and physical stimuli. Chem Sci 2017;8:890.

    Article  CAS  Google Scholar 

  9. Wang M, Meng H, Wang D, Yin Y, Stroeve P, Zhang Y, Sheng Z, Chen B, Zhan K, Hou X. Dynamic curvature nanochannel-based membrane with anomalous ionic transport behaviors and reversible rectification switch. Adv Mater 2019;31:e1805130.

    Article  Google Scholar 

  10. Lu J, Zhang H, Hou J, Li X, Hu X, Hu Y, Easton CD, Li Q, Sun C, Thornton AW, Hill MR, Zhang X, Jiang G, Liu JZ, Hill AJ, Freeman BD, Jiang L, Wang H. Efficient metal ion sieving in rectifying subnanochannels enabled by metal-organic frameworks. Nat Mater 2020;19:767.

    Article  CAS  Google Scholar 

  11. Stein D, Kruithof M, Dekker C. Surface-charge-governed ion transport in nanofluidic channels. Phys Rev Lett 2004;93:035901.

    Article  Google Scholar 

  12. Guo W, Cao LX, Xia JC, Nie FQ, Ma W, Xue JM, Song YL, Zhu DB, Wang YG, Jiang L. Energy harvesting with single-ion-selective nanopores: a concentration-gradient-driven nanofluidic power source. Adv Funct Mater 2010;20:1339.

    Article  CAS  Google Scholar 

  13. Gillespie D. High energy conversion efficiency in nanofluidic channels. Nano Lett 2012;12:1410.

    Article  CAS  Google Scholar 

  14. Daiguji H, Yang PD, Szeri AJ, Majumdar A. Electrochemomechanical energy conversion in nanofluidic channels. Nano Lett 2004;4:2315.

    Article  CAS  Google Scholar 

  15. Han J, Fu J, Schoch RB. Molecular sieving using nanofilters: past, present and future. Lab Chip 2008;8:23.

    Article  CAS  Google Scholar 

  16. Kim SJ, Song YA, Han J. Nanofluidic concentration devices for biomolecules utilizing ion concentration polarization: theory, fabrication, and applications. Chem Soc Rev 2010;39:912.

    Article  CAS  Google Scholar 

  17. Howorka S, Siwy Z. Nanopore analytics: sensing of single molecules. Chem Soc Rev 2009;38:2360.

    Article  CAS  Google Scholar 

  18. Jiang Y, Liu N, Guo W, Xia F, Jiang L. Highly-efficient gating of solid-state nanochannels by DNA supersandwich structure containing ATP aptamers: a nanofluidic IMPLICATION logic device. J Am Chem Soc 2012;134:15395.

    Article  CAS  Google Scholar 

  19. Kim SJ, Ko SH, Kang KH, Han J. Direct seawater desalination by ion concentration polarization. Nat Nanotechnol 2010;5:297.

    Article  CAS  Google Scholar 

  20. Cohen-Tanugi D, Grossman JC. Water desalination across nanoporous graphene. Nano Lett 2012;12:3602.

    Article  CAS  Google Scholar 

  21. Rangnekar N, Mittal N, Elyassi B, Caro J, Tsapatsis M. Zeolite membranes—a review and comparison with MOFs. Chem Soc Rev 2015;44:7128.

    Article  CAS  Google Scholar 

  22. Howarth AJ, Liu Y, Li P, Li Z, Wang TC, Hupp JT, Farha OK. Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat Rev Mater 2016;1:15018.

    Article  CAS  Google Scholar 

  23. Denny MS, Moreton JC, Benz L, Cohen SM. Metal–organic frameworks for membrane-based separations. Nat Rev Mater 2016;1:15018.

    Article  Google Scholar 

  24. Hummer G, Rasaiah JC, Noworyta JP. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 2001;414:188.

    Article  CAS  Google Scholar 

  25. Tunuguntla RH, Henley RY, Yao YC, Pham TA, Wanunu M, Noy A. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 2017;357:792.

    Article  CAS  Google Scholar 

  26. Song W, Joshi H, Chowdhury R, Najem JS, Shen YX, Lang C, Henderson CB, Tu YM, Farell M, Pitz ME, Maranas CD, Cremer PS, Hickey RJ, Sarles SA, Hou JL, Aksimentiev A, Kumar M. Artificial water channels enable fast and selective water permeation through water-wire networks. Nat Nanotechnol 2020;15:73.

    Article  CAS  Google Scholar 

  27. Lang C, Li W, Dong Z, Zhang X, Yang F, Yang B, Deng X, Zhang C, Xu J, Liu J. Biomimetic transmembrane channels with high stability and transporting efficiency from helically folded macromolecules. Angew Chem Int Ed 2016;55:9723.

    Article  CAS  Google Scholar 

  28. Shao Y, Sun Z, Tian Z, Li S, Wu G, Wang M, Tong X, Shen F, Xia Z, Tung V, Sun J, Shao Y. Regulating oxygen substituents with optimized redox activity in chemically reduced graphene oxide for aqueous Zn-ion hybrid capacitor. Adv Funct Mater 2020;31:2007843.

    Article  Google Scholar 

  29. Xia Z, Sun H, He X, Sun ZT, Lu C, Li J, Peng Y, Dou SX, Sun JY, Liu ZF. In situ construction of CoSe2@vertical-oriented graphene arrays as self-supporting electrodes for sodium-ion capacitors and electrocatalytic oxygen evolution. Nano Energy 2019;60:385.

    Article  CAS  Google Scholar 

  30. Eom W, Shin H, Ambade RB, Lee SH, Lee KH, Kang DJ, Han TH. Large-scale wet-spinning of highly electroconductive MXene fibers. Nat Commun 2020;11:2825.

    Article  CAS  Google Scholar 

  31. Shao Y, El-Kady MF, Lin CW, Zhu G, Marsh KL, Hwang JY, Zhang Q, Li Y, Wang H, Kaner RB. 3D Freeze-casting of cellular graphene films for ultrahigh-power-density supercapacitors. Adv Mater 2016;28:6719.

    Article  CAS  Google Scholar 

  32. Koltonow AR, Huang J. Ionic transport two-dimensional nanofluidics. Science 2016;351:1395.

    Article  CAS  Google Scholar 

  33. Gao J, Feng Y, Guo W, Jiang L. Nanofluidics in two-dimensional layered materials: inspirations from nature. Chem Soc Rev 2017;46:5400.

    Article  CAS  Google Scholar 

  34. Shen J, Liu GP, Han Y, Jin WQ. Artificial channels for confined mass transport at the sub-nanometre scale. Nat Rev Mater 2021;6:294.

    Article  CAS  Google Scholar 

  35. Sparreboom W, van den Berg A, Eijkel JC. Principles and applications of nanofluidic transport. Nat Nanotechnol 2009;4:713.

    Article  CAS  Google Scholar 

  36. Fang B, Chang D, Xu Z, Gao C. A review on graphene fibers: expectations, advances, and prospects. Adv Mater 2020;32:e1902664.

    Article  Google Scholar 

  37. Levitt A, Zhang J, Dion G, Gogotsi Y, Razal JM. MXene-based fibers, yarns, and fabrics for wearable energy storage devices. Adv Funct Mater 2020;30:2000739.

    Article  CAS  Google Scholar 

  38. Park H, Lee KH, Kim YB, Ambade SB, Noh SH, Eom W, Hwang JY, Lee WJ, Huang J, Han TH. Dynamic assembly of liquid crystalline graphene oxide gel fibers for ion transport. Sci Adv 2018;4:eaau2104.

    Article  CAS  Google Scholar 

  39. Ghanbari H, Esfandiar A. Ion transport through graphene oxide fibers as promising candidate for blue energy harvesting. Carbon 2020;165:267.

    Article  CAS  Google Scholar 

  40. Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater 2014;26:992.

    Article  CAS  Google Scholar 

  41. Zhang YZ, El-Demellawi JK, Jiang Q, Ge G, Liang H, Lee K, Dong X, Alshareef HN. MXene hydrogels: fundamentals and applications. Chem Soc Rev 2020;49:7229.

    Article  CAS  Google Scholar 

  42. Hart JL, Hantanasirisakul K, Lang AC, Anasori B, Pinto D, Pivak Y, van Omme JT, May SJ, Gogotsi Y, Taheri ML. Control of MXenes’ electronic properties through termination and intercalation. Nat Commun 2019;10:522.

    Article  CAS  Google Scholar 

  43. Li S, Fan Z, Wu G, Shao Y, Xia Z, Wei C, Shen F, Tong X, Yu J, Chen K, Wang M, Zhao Y, Luo Z, Jian M, Sun J, Kaner RB, Shao Y. Assembly of nanofluidic mxene fibers with enhanced ionic transport and capacitive charge storage by flake orientation. ACS Nano 2021;15:7821.

    Article  CAS  Google Scholar 

  44. Wang L, Xie S, Wang Z, Liu F, Yang Y, Tang C, Wu X, Liu P, Li Y, Saiyin H, Zheng S, Sun X, Xu F, Yu H, Peng H. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat Biomed Eng 2020;4:159.

    Article  CAS  Google Scholar 

  45. Hong G, Lieber CM. Novel electrode technologies for neural recordings. Nat Rev Neurosci 2019;20:330.

    Article  CAS  Google Scholar 

  46. Wang J, Wang L, Feng J, Tang C, Sun X, Peng H. Long-term in vivo monitoring of chemicals with fiber sensors. Adv Fiber Mater 2021;3:47.

    Article  CAS  Google Scholar 

  47. Zhou J, Hu Z, Zabihi F, Chen Z, Zhu M. Progress and perspective of antiviral protective material. Adv Fiber Mater 2020;2:123.

    Article  CAS  Google Scholar 

  48. Huang W, Xiao Y, Shi X. Construction of electrospun organic/inorganic hybrid nanofibers for drug delivery and tissue engineering applications. Adv Fiber Mater 2019;1:32.

    Article  Google Scholar 

  49. Raidongia K, Huang J. Nanofluidic ion transport through reconstructed layered materials. J Am Chem Soc 2012;134:16528.

    Article  CAS  Google Scholar 

  50. Mi B. Materials science. Graphene oxide membranes for ionic and molecular sieving. Science 2014;343:740.

    Article  CAS  Google Scholar 

  51. Huang H, Song Z, Wei N, Shi L, Mao Y, Ying Y, Sun L, Xu Z, Peng X. Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes. Nat Commun 2013;4:2979.

    Article  Google Scholar 

  52. Yang X, Cheng C, Wang Y, Qiu L, Li D. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 2013;341:534.

    Article  CAS  Google Scholar 

  53. Miller JR, Simon P. Materials science. Electrochemical capacitors for energy management. Science 2008;321:651.

    Article  CAS  Google Scholar 

  54. Li Z, Gadipelli S, Li H, Howard CA, Brett DJL, Shearing PR, Guo Z, Parkin IP, Li F. Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage. Nat Energy 2020;5:160.

    Article  CAS  Google Scholar 

  55. Abraham J, Vasu KS, Williams CD, Gopinadhan K, Su Y, Cherian CT, Dix J, Prestat E, Haigh SJ, Grigorieva IV, Carbone P, Geim AK, Nair RR. Tunable sieving of ions using graphene oxide membranes. Nat Nanotechnol 2017;12:546.

    Article  CAS  Google Scholar 

  56. Eom W, Park H, Noh SH, Koh KH, Lee K, Lee WJ, Han TH. Strengthening and stiffening graphene oxide fiber with trivalent metal ion binders. Part Part Syst Charact 2017;34:1600401.

    Article  Google Scholar 

  57. Schoch RB, Renaud P. Ion transport through nanoslits dominated by the effective surface charge. Appl Phys Lett 2005;86:253111.

    Article  Google Scholar 

  58. Ruckenstein E, Schmidt AB. Ion binding by charged particles in their diffuse layer based on a symmetrized Poisson-Boltzmann approach. J Chem Soc Faraday Trans 1992;88:2365.

    Article  CAS  Google Scholar 

  59. Guan W, Fan R, Reed MA. Field-effect reconfigurable nanofluidic ionic diodes. Nat Commun 2011;2:506.

    Article  Google Scholar 

  60. Cheng LJ, Guo LJ. Rectified ion transport through concentration gradient in homogeneous silica nanochannels. Nano Lett 2007;7:3165.

    Article  CAS  Google Scholar 

  61. Dreyer DR, Todd AD, Bielawski CW. Harnessing the chemistry of graphene oxide. Chem Soc Rev 2014;43:5288.

    Article  CAS  Google Scholar 

  62. Gao W, Alemany LB, Ci L, Ajayan PM. New insights into the structure and reduction of graphite oxide. Nat Chem 2009;1:403.

    Article  CAS  Google Scholar 

  63. Chen J, Zhang Y, Zhang M, Yao B, Li Y, Huang L, Li C, Shi G. Water-enhanced oxidation of graphite to graphene oxide with controlled species of oxygenated groups. Chem Sci 2016;7:1874.

    Article  CAS  Google Scholar 

  64. Loh KP, Bao Q, Ang PK, Yang J. The chemistry of graphene. J Mater Chem 2010;20:2277.

    Article  CAS  Google Scholar 

  65. Liu Z, Robinson JT, Sun X, Dai H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 2008;130:10876.

    Article  CAS  Google Scholar 

  66. Chen L, Shi G, Shen J, Peng B, Zhang B, Wang Y, Bian F, Wang J, Li D, Qian Z, Xu G, Liu G, Zeng J, Zhang L, Yang Y, Zhou G, Wu M, Jin W, Li J, Fang H. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 2017;550:380.

    Article  CAS  Google Scholar 

  67. Sun P, Zhu M, Wang K, Zhong M, Wei J, Wu D, Xu Z, Zhu H. Selective ion penetration of graphene oxide membranes. ACS Nano 2013;7:428.

    Article  CAS  Google Scholar 

  68. Ding L, Wei Y, Li L, Zhang T, Wang H, Xue J, Ding LX, Wang S, Caro J, Gogotsi Y. MXene molecular sieving membranes for highly efficient gas separation. Nat Commun 2018;9:155.

    Article  Google Scholar 

  69. Shen J, Liu G, Huang K, Chu Z, Jin W, Xu N. Subnanometer two-dimensional graphene oxide channels for ultrafast gas sieving. ACS Nano 2016;10:3398.

    Article  CAS  Google Scholar 

  70. Shen J, Liu GZ, Ji YF, Liu Q, Cheng L, Guan KC, Zhang MC, Liu GP, Xiong J, Yang J, Jin WQ. 2D MXene nanofilms with tunable gas transport channels. Adv Funct Mater 2018;28:1801511.

    Article  Google Scholar 

  71. Ji JZ, Kang Q, Zhou Y, Feng YP, Chen X, Yuan JY, Guo W, Wei Y, Jiang L. Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs. Adv Funct Mater 2017;27:1603623.

    Article  Google Scholar 

  72. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GH, Evmenenko G, Nguyen ST, Ruoff RS. Preparation and characterization of graphene oxide paper. Nature 2007;448:457.

    Article  CAS  Google Scholar 

  73. Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2008;2:463.

    Article  CAS  Google Scholar 

  74. Tsou CH, An QF, Lo SC, De Guzman M, Hung WS, Hu CC, Lee KR, Lai JY. Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration. J Membr Sci 2015;477:93.

    Article  CAS  Google Scholar 

  75. Liu Z, Li Z, Xu Z, Xia ZX, Hu XZ, Kou L, Peng L, Wei YY, Gao C. Wet-spun continuous graphene films. Chem Mater 2014;26:6786.

    Article  CAS  Google Scholar 

  76. Zhang M, Guo R, Chen K, Wang Y, Niu J, Guo Y, Zhang Y, Yin Z, Xia K, Zhou B, Wang H, He W, Liu J, Sitti M, Zhang Y. Microribbons composed of directionally self-assembled nanoflakes as highly stretchable ionic neural electrodes. PNAS 2020;117:14667.

    Article  Google Scholar 

  77. Liu Y, Xu Z, Gao W, Cheng Z, Gao C. Graphene and other 2D colloids: liquid crystals and macroscopic fibers. Adv Mater 2017;29:1606794.

    Article  Google Scholar 

  78. Hu XL, Tian MW, Pan N, Sun B, Li ZQ, Ma YL, Zhang XS, Zhu SF, Chen ZH, Qu LJ. Structure-tunable graphene oxide fibers via microfluidic spinning route for multifunctional textiles. Carbon 2019;152:106.

    Article  CAS  Google Scholar 

  79. Zhang M, Wang Y, Jian M, Wang C, Liang X, Niu J, Zhang Y. Spontaneous alignment of graphene oxide in hydrogel during 3D printing for multistimuli-responsive actuation. Adv Sci 2020;7:1903048.

    Article  CAS  Google Scholar 

  80. Xin G, Zhu W, Deng Y, Cheng J, Zhang LT, Chung AJ, De S, Lian J. Microfluidics-enabled orientation and microstructure control of macroscopic graphene fibres. Nat Nanotechnol 2019;14:168.

    Article  CAS  Google Scholar 

  81. Kim JE, Han TH, Lee SH, Kim JY, Ahn CW, Yun JM, Kim SO. Graphene oxide liquid crystals. Angew Chem Int Ed 2011;50:3043.

    Article  CAS  Google Scholar 

  82. Kim J, Michelin S, Hilbers M, Martinelli L, Chaudan E, Amselem G, Fradet E, Boilot JP, Brouwer AM, Baroud CN, Peretti J, Gacoin T. Monitoring the orientation of rare-earth-doped nanorods for flow shear tomography. Nat Nanotechnol 2017;12:914.

    Article  CAS  Google Scholar 

  83. Nakayama M, Kajiyama S, Kumamoto A, Nishimura T, Ikuhara Y, Yamato M, Kato T. Stimuli-responsive hydroxyapatite liquid crystal with macroscopically controllable ordering and magneto-optical functions. Nat Commun 2018;9:568.

    Article  Google Scholar 

  84. Hakansson KM, Fall AB, Lundell F, Yu S, Krywka C, Roth SV, Santoro G, Kvick M, Prahl Wittberg L, Wagberg L, Soderberg LD. Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nat Commun 2014;5:4018.

    Article  Google Scholar 

  85. Xu B, Ma S, Xiang Y, Zhang J, Zhu M, Wei L, Tao G, Deng D. In-fiber structured particles and filament arrays from the perspective of fluid instabilities. Adv Fiber Mater 2020;2:1.

    Article  CAS  Google Scholar 

  86. Kiriya D, Kawano R, Onoe H, Takeuchi S. Microfluidic control of the internal morphology in nanofiber-based macroscopic cables. Angew Chem Int Ed 2012;51:7942.

    Article  CAS  Google Scholar 

  87. Li P, Liu YJ, Shi SY, Xu Z, Ma WG, Wang ZQ, Liu SP, Gao C. Highly Crystalline Graphene Fibers with Superior Strength and Conductivities by Plasticization Spinning. Adv Funct Mater 2020;30:2006584.

    Article  CAS  Google Scholar 

  88. Shin H, Eom W, Lee KH, Jeong W, Kang DJ, Han TH. Highly electroconductive and mechanically strong Ti3C2Tx MXene fibers using a deformable MXene gel. ACS Nano 2021;15:3320.

    Article  CAS  Google Scholar 

  89. Merlet C, Rotenberg B, Madden PA, Taberna PL, Simon P, Gogotsi Y, Salanne M. On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nat Mater 2012;11:306.

    Article  CAS  Google Scholar 

  90. Salanne M, Rotenberg B, Naoi K, Kaneko K, Taberna PL, Grey CP, Dunn B, Simon P. Efficient storage mechanisms for building better supercapacitors. Nat Energy 2016;1:16070.

    Article  CAS  Google Scholar 

  91. Futamura R, Iiyama T, Takasaki Y, Gogotsi Y, Biggs MJ, Salanne M, Segalini J, Simon P, Kaneko K. Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores. Nat Mater 2017;16:1225.

    Article  CAS  Google Scholar 

  92. Yang QY, Xu Z, Fang B, Huang TQ, Cai SY, Chen H, Liu YJ, Gopalsamy K, Gao WW, Gao C. MXene/graphene hybrid fibers for high performance flexible supercapacitors. J Mater Chem A 2017;5:22113.

    Article  CAS  Google Scholar 

  93. Yu C, Gong Y, Chen R, Zhang M, Zhou J, An J, Lv F, Guo S, Sun G. A solid-state fibriform supercapacitor boosted by host-guest hybridization between the carbon nanotube scaffold and mxene nanosheets. Small 2018;14:1801203.

    Article  Google Scholar 

  94. Levitt A, Hegh D, Phillips P, Uzun S, Anayee M, Razal JM, Gogotsi Y, Dion G. 3D knitted energy storage textiles using MXene-coated yarns. Mater Today 2020;34:17.

    Article  CAS  Google Scholar 

  95. Sun G, Zhang X, Lin R, Yang J, Zhang H, Chen P. Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi-walled carbon nanotubes for solid-state, flexible, asymmetric supercapacitors. Angew Chem Int Ed 2015;54:4651.

    Article  CAS  Google Scholar 

  96. Wang B, Fang X, Sun H, He S, Ren J, Zhang Y, Peng H. Fabricating continuous supercapacitor fibers with high performances by integrating all building materials and steps into one process. Adv Mater 2015;27:7854.

    Article  CAS  Google Scholar 

  97. Yu D, Goh K, Wang H, Wei L, Jiang W, Zhang Q, Dai L, Chen Y. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat Nanotechnol 2014;9:555.

    Article  CAS  Google Scholar 

  98. Seyedin S, Yanza ERS, Razal JM. Knittable energy storing fiber with high volumetric performance made from predominantly MXene nanosheets. J Mater Chem A 2017;5:24076.

    Article  CAS  Google Scholar 

  99. Zhang J, Seyedin S, Qin S, Wang Z, Moradi S, Yang F, Lynch PA, Yang W, Liu J, Wang X, Razal JM. Highly conductive Ti3C2Tx MXene hybrid fibers for flexible and elastic fiber-shaped supercapacitors. Small 2019;15:e1804732.

    Article  Google Scholar 

  100. Zhang Z, Wen LP, Jiang L. Nanofluidics for osmotic energy conversion. Nat Rev Mater 2021;6:622.

    Article  CAS  Google Scholar 

  101. Lee KH, Park H, Eom W, Kang DJ, Noh SH, Han TH. Graphene quantum dots/graphene fiber nanochannels for osmotic power generation. J Mater Chem A 2019;7:23727.

    Article  CAS  Google Scholar 

  102. Zhao S, Li G, Tong C, Chen W, Wang P, Dai J, Fu X, Xu Z, Liu X, Lu L, Liang Z, Duan X. Full activation pattern mapping by simultaneous deep brain stimulation and fMRI with graphene fiber electrodes. Nat Commun 2020;11:1788.

    Article  CAS  Google Scholar 

  103. Yin R, Xu Z, Mei M, Chen Z, Wang K, Liu Y, Tang T, Priydarshi MK, Meng X, Zhao S, Deng B, Peng H, Liu Z, Duan X. Soft transparent graphene contact lens electrodes for conformal full-cornea recording of electroretinogram. Nat Commun 2018;9:2334.

    Article  Google Scholar 

  104. Zhao S, Liu X, Xu Z, Ren H, Deng B, Tang M, Lu L, Fu X, Peng H, Liu Z, Duan X. Graphene encapsulated copper microwires as highly MRI compatible neural electrodes. Nano Lett 2016;16:7731.

    Article  CAS  Google Scholar 

  105. Wang K, Frewin CL, Esrafilzadeh D, Yu C, Wang C, Pancrazio JJ, Romero-Ortega M, Jalili R, Wallace G. High-performance graphene-fiber-based neural recording microelectrodes. Adv Mater 2019;31:e1805867.

    Article  Google Scholar 

  106. Wang L, Fu X, He J, Shi X, Chen T, Chen P, Wang B, Peng H. Application challenges in fiber and textile electronics. Adv Mater 2020;32:e1901971.

    Article  Google Scholar 

  107. Xu X, Xie S, Zhang Y, Peng H. The rise of fiber electronics. Angew Chem Int Ed 2019;58:13643.

    Article  CAS  Google Scholar 

  108. Zhu M, Kikutani T, Liu T, Ramakrishna S, Tao G. Fiber changes our life. Adv Fiber Mater 2019;1:1.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was financially supported by a start-up research grant for a distinguished professor at Soochow University (Y. S.), the National Natural Science Foundation of China No. 52003188 (Y. S.), the Natural Science Foundation of Jiangsu Province No. BK20200871 (Y.S.), the open research fund for Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies (Y. S.), and the open research fund State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University No. KF2104 (Y. S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaogang Li or Yuanlong Shao.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Li, Y., Shao, Y. et al. Emerging Two-dimensional Materials Constructed Nanofluidic Fiber: Properties, Preparation and Applications. Adv. Fiber Mater. 4, 129–144 (2022). https://doi.org/10.1007/s42765-021-00111-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-021-00111-w

Keywords

Navigation