Skip to main content
Log in

Nature-inspired wood-based solar evaporation system for efficient desalination and water purification

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Interfacial solar evaporation technology is considered as one of the most promising green ways to solve the problems of freshwater scarcity and sewage treatment. Herein, we prepared a low-cost, easy-to-fabricate, and excellent performance polyaniline (PANI)-wood solar evaporator using a simple surface self-assembly technique. The evaporator achieves an evaporation rate of 1.66 kg m−2 h−1 under 1 sun and a photothermal conversion efficiency of 86.9%. In the process of seawater desalination, the purification rate of four ions in seawater reaches at least 99%. And water purified by evaporator meets the drinking water standard of the World Health Organization (WHO). In the experiment of evaporating organic dye aqueous solution, the light transmittance of the purified water is similar to that of deionized water. These performances are higher than those of most reported wood-based solar evaporators. Therefore, the efficient solar evaporation system has great potential in addressing desalination and water purification.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

Data will be made available upon reasonable request.

Code availability

Not applicable.

References

  1. Sharshir SW, Elsheikh AH, Peng GL, Yang N, El-Samadony MOA, Kabeel AE (2017) Thermal performance and exergy analysis of solar stills-a review. Renew Sust Energ Rev 73:521–544. https://doi.org/10.1016/j.rser.2017.01.156

    Article  CAS  Google Scholar 

  2. Bhushan B (2020) Design of water harvesting towers and projections for water collection from fog and condensation. Philos Trans R Soc A-Math Phys Eng Sci 378:20200138. https://doi.org/10.1098/rsta.2020.0138

    Article  Google Scholar 

  3. Gao MM, Peh CK, Zhu LL, Yilmaz G, Ho GW (2020) Photothermal catalytic gel featuring spectral and thermal management for parallel freshwater and hydrogen production. Adv Energy Mater 10:2000925. https://doi.org/10.1002/aenm.202000925

    Article  CAS  Google Scholar 

  4. Liu N, Hao L, Zhang BY, Niu R, Gong J, Tang T (2022) Rational design of high-performance bilayer solar evaporator by using waste polyester-derived porous carbon-coated wood. Energy Environ Mater 5:617–626. https://doi.org/10.1002/eem2.12199

    Article  CAS  Google Scholar 

  5. Lu YL, Nakicenovic N, Visbeck M, Stevance AS (2015) Five priorities for the UN sustainable development goals. Nature 520:432–433. https://doi.org/10.1038/520432a

    Article  Google Scholar 

  6. Van der Bruggen B (2021) Sustainable implementation of innovative technologies for water purification. Nat Rev Chem 5:217–218. https://doi.org/10.1038/s41570-021-00264-7

    Article  CAS  Google Scholar 

  7. Dandah TH, Mitsos A (2014) Structural optimization of seawater desalination: II novel MED-MSF-TVC configurations. Desalination 344:219–227. https://doi.org/10.1016/j.desa1.2014.03.026

    Article  Google Scholar 

  8. Cui CT, Xi ZJ, Liu SY, Sun JS (2019) An enumeration-based synthesis framework for multi-effect distillation processes. Chem Eng Res Des 144:216–227. https://doi.org/10.1016/j.cherd.2019.02.018

    Article  CAS  Google Scholar 

  9. Boubakri A, Bouguecha SA, Hafiane A (2022) FO-MD integrated process for nitrate removal from contaminated groundwater using seawater as draw solution to supply clean water for rural communities. Sep Purif Technol 298:121621. https://doi.org/10.1016/j.seppur.2022.121621

    Article  CAS  Google Scholar 

  10. Aulakh MK, Kaur H, Bansal M, Pal B, Singh S (2022) Utilization of waste and renewable material-HCM as an efficient adsorbent for heavy metal ions removal: a study of adsorption isotherms and kinetics. ChemistrySelect 7:e202200659. https://doi.org/10.1002/slct.202200659

    Article  CAS  Google Scholar 

  11. Shatat M, Worall M, Riffat S (2013) Opportunities for solar water desalination worldwide: Review. Sustain Cities Soc 9:67–80. https://doi.org/10.1016/j.scs.2013.03.004

    Article  Google Scholar 

  12. Ghaffour N, Missimer TM, Amy GL (2013) Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability. Desalination 309:197–207. https://doi.org/10.1016/j.desal.2012.10.015

    Article  CAS  Google Scholar 

  13. Wu FF, Ze HJ, Chen SH, Gao XF (2020) High-efficiency boiling heat transfer interfaces composed of electroplated copper nanocone cores and low-thermal-conductivity nickel nanocone coverings. ACS Appl Mater Interfaces 12:39902–39909. https://doi.org/10.1021/acsami.0c10761

    Article  CAS  Google Scholar 

  14. Chen CJ, Kuang YD, Hu LB (2019) Challenges and opportunities for solar evaporation. JOULE 3:683–718. https://doi.org/10.1016/j.joule.2018.12.023

    Article  CAS  Google Scholar 

  15. Chen CJ, Kuang YD, Zhu SZ, Burgert I, Keplinger T, Gong A, Li T, Berglund L, Eichhorn SJ, Hu LB (2020) Structure-property-function relationships of natural and engineered wood. Nat Rev Mater 5:642–666. https://doi.org/10.1038/s41578-020-0195-z

    Article  CAS  Google Scholar 

  16. Liu ZJ, Song HM, Ji DX, Li CY, Cheney A, Liu YH, Zhang N, Zeng X, Chen BR, Gao J, Li YS, Liu X, Aga D, Jiang SH, Yu ZF, Gan QQ (2017) Extremely cost-effective and efficient solar vapor generation under nonconcentrated illumination using thermally isolated black paper. Glob Chall 1:1600003. https://doi.org/10.1002/gch2.201600003

    Article  Google Scholar 

  17. Zhu MM, Yu JL, Ma CL, Zhang CY, Wu DX, Zhu HT (2019) Carbonized daikon for high efficient solar steam generation. Sol Energy Mater Sol Cells 191:83–90. https://doi.org/10.1016/j.solmat.2018.11.015

    Article  CAS  Google Scholar 

  18. Zhu MW, Li YJ, Chen FJ, Zhu XY, Dai JQ, Li YF, Yang Z, Yan XJ, Song JW, Wang YB, Hitz E, Luo W, Lu MH, Yang B, Hu LB (2018) Plasmonic wood for high-efficiency solar steam generation. Adv Energy Mater 8:1701028. https://doi.org/10.1002/aenm.201701028

    Article  CAS  Google Scholar 

  19. Chen CJ, Li YJ, Song JW, Yang Z, Kuang Y, Hitz E, Jia C, Gong A, Jiang F, Zhu JY, Yang B, Xie J, Hu LB (2017) Highly Flexible and Efficient Solar Steam Generation Device. Adv Mater 29:1701756. https://doi.org/10.1002/adma.201701756

    Article  CAS  Google Scholar 

  20. Wang ZX, Horseman T, Straub AP, Yip NY, Li DY, Elimelech M, Lin SH (2019) Pathways and challenges for efficient solar-thermal desalination. Sci Adv 5:eaax0763. https://doi.org/10.1126/sciadv.aax0763

    Article  CAS  Google Scholar 

  21. Zhao F, Guo YH, Zhou XY, Shi W, Yu GH (2020) Materials for solar-powered water evaporation. Nat Rev Mater 5:388–401. https://doi.org/10.1038/s41578-020-0182-4

    Article  Google Scholar 

  22. Gao MM, Zhu LL, Peh CK, Ho GW (2019) Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ Sci 12:841–864. https://doi.org/10.1039/c8ee01146j

    Article  CAS  Google Scholar 

  23. Xu N, Li JL, Wang Y, Fang C, Li XQ, Wang YX, Zhou L, Zhu B, Wu Z, Zhu SN, Zhu J (2019) A water lily-inspired hierarchical design for stable and efficient solar evaporation of high-salinity brine. Sci Adv 5:eaaw7013. https://doi.org/10.1126/sciadv.aaw7013

    Article  CAS  Google Scholar 

  24. Shi Y, Li RY, Jin Y, Zhuo SF, Shi L, Chang J, Hong S, Ng KC, Wang P (2018) A 3D photothermal structure toward improved energy efficiency in solar steam generation. Joule 2:1171–1186. https://doi.org/10.1016/j.joule.2018.03.013

    Article  CAS  Google Scholar 

  25. Li ZT, Wang CB, Su JB, Ling S, Wang W, An M (2019) Fast-growing field of interfacial solar steam generation: evolutional materials, engineered architectures, and synergistic applications. Sol RRL 3:1800206. https://doi.org/10.1002/solr.201800206

    Article  Google Scholar 

  26. He XH, Zhang K, Wang H, Zhang Y, Xiao G, Niu HT, Yao YG (2022) Tailored carbon-based aramid nanofiber nanocomposites with highly anisotropic thermal conductivity and superior mechanical properties for thermal management. Carbon 199:367–378. https://doi.org/10.1016/j.carbon.2022.07.078

    Article  CAS  Google Scholar 

  27. Han JC, Deng R, Chen HL, Yu L, Chen CJ, Wu QY (2022) Real-time and in situ monitoring of evaporation rate and salt precipitation during interfacial solar evaporation. Nano Energy 104:107961. https://doi.org/10.1016/j.nanoen.2022.107961

    Article  CAS  Google Scholar 

  28. Wang YC, Zhang LB, Wang P (2016) Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation. ACS Sustain Chem Eng 4:1223–1230. https://doi.org/10.1021/acssuschemeng.5b01274

    Article  CAS  Google Scholar 

  29. Li S, He YY, Guan YP, Liu XY, Liu HX, Xie MS, Zhou L, Wei C, Yu CB, Chen YH (2020) Cellulose nanofibril-stabilized pickering emulsion and in situ polymerization lead to hybrid aerogel for high-efficiency solar steam generation. ACS Appl Polym Mater 2:4581–4591. https://doi.org/10.1021/acsapm.0c00674

    Article  CAS  Google Scholar 

  30. Li T, Liu H, Zhao XP, Chen G, Dai JQ, Pastel G, Jia C, Chen CJ, Hitz E, Siddhartha D, Yang RG, Hu LB (2018) Scalable and highly efficient mesoporous wood-based solar steam generation device: localized heat rapid water transport. Adv Funct Mater 28:1707134. https://doi.org/10.1002/adfm.201707134

    Article  CAS  Google Scholar 

  31. Wang XZ, He YR, Liu X, Cheng G, Zhu JQ (2017) Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes. Appl Energy 195:414–425. https://doi.org/10.1016/j.apenergy.2017.03.080

    Article  CAS  Google Scholar 

  32. Liu YM, Yu ST, Feng R, Bernard A, Liu Y, Zhang Y, Duan HZ, Shang W, Tao P, Song CY, Deng T (2015) A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. Adv Mater 27:2768–2774. https://doi.org/10.1002/adma.201500135

    Article  CAS  Google Scholar 

  33. Hu XZ, Xu WC, Zhou L, Tan YL, Wang Y, Zhu SN, Zhu J (2017) Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Adv Mater 29:1604031. https://doi.org/10.1002/adma.201604031

    Article  CAS  Google Scholar 

  34. Li XQ, Xu WC, Tang MY, Zhou L, Zhu B, Zhu SN, Zhu J (2016) Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc Natl Acad Sci U S A 113:13953–13958. https://doi.org/10.1073/pnas.1613031113

    Article  CAS  Google Scholar 

  35. Wang YL, Liu H, Chen CJ, Kuang YD, Song JW, Xie H, Jia C, Kronthal S, Xu X, He SM, Hu LB (2019) All natural, high efficient groundwater extraction via solar steam/vapor generation. Adv Sustain Sys 3:1800055. https://doi.org/10.1002/adsu.201800055

    Article  CAS  Google Scholar 

  36. Mahltig B, Swaboda C, Roessler A, Böttcher H (2008) Functionalising wood by nanosol application. J Mater Chem 18:3180–3192. https://doi.org/10.1039/B718903F

    Article  CAS  Google Scholar 

  37. Zhu H, Jia Z, Chen Y, Weadock N, Wan J, Vaaland O, Han X, Li T, Hu L (2013) Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Lett 13:3093–3100. https://doi.org/10.1021/nl400998t

    Article  CAS  Google Scholar 

  38. Zhu MW, Song JW, Li T, Gong A, Wang YB, Dai JQ, Yao YG, Luo W, Henderson D, Hu LB (2016) Highly anisotropic, highly transparent wood composites. Adv Mater 28:5181–5187. https://doi.org/10.1002/adma.201600427

    Article  CAS  Google Scholar 

  39. Sehaqui H, Zhou Q, Berglund LA (2011) Nanostructured biocomposites of high toughness—a wood cellulose nanofiber network in ductile hydroxyethylcellulose matrix. Soft Matter 7:7342–7350. https://doi.org/10.1039/C1SM05325F

    Article  CAS  Google Scholar 

  40. Li W, Chen ZJ, Yu HP, Li J, Liu SX (2021) Wood-derived carbon materials and light-emitting materials. Adv Mater 33:2000596. https://doi.org/10.1002/adma.202000596

    Article  CAS  Google Scholar 

  41. Jiang QS, Singamaneni S (2017) Water from wood: pouring through pores. Joule 1:429–430. https://doi.org/10.1016/j.joule.2017.10.018

    Article  Google Scholar 

  42. Geng L, Li L, Zhang H, Zhong M, Mu P, Li J (2022) Interfacial solar evaporator synergistic phase change energy storage for all-day steam generation. J Mater Chem A 10:15485–15496. https://doi.org/10.1039/D2TA04479J

    Article  CAS  Google Scholar 

  43. Liu H, Chen CJ, Chen G, Kuang YD, Zhao XP, Song JW, Jia C, Xu X, Hitz E, Xie H, Wang S, Jiang F, Li T, Li YJ, Gong A, Yang RG, Das S, Hu LB (2018) High-performance solar steam device with layered channels: artificial tree with a reversed design. Adv Energy Mater 8:1701616. https://doi.org/10.1002/aenm.201701616

    Article  CAS  Google Scholar 

  44. Chen CL, Zhou L, Yu JY, Wang YX, Nie SM, Zhu SN, Zhu J (2018) Dual functional asymmetric plasmonic structures for solar water purification and pollution detection. Nano Energy 51:451–456. https://doi.org/10.1016/j.nanoen.2018.06.077

    Article  CAS  Google Scholar 

  45. Zhou L, Tan YL, Ji DX, Zhu B, Zhang P, Xu J, Gan QQ, Yu ZF, Zhu J (2016) Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci Adv 2:e1501227. https://doi.org/10.1126/sciadv.1501227

    Article  CAS  Google Scholar 

  46. Zielinski MS, Choi JW, La Grange T, Modestino M, Hashemi SMH, Pu Y, Birkhold S, Hubbell JA, Psaltis D (2016) Hollow mesoporous plasmonic nanoshells for enhanced solar vapor generation. Nano Lett 16:2159–2167. https://doi.org/10.1021/acs.nanolett.5b03901

    Article  CAS  Google Scholar 

  47. Fan SQ, Cora S, Sa N (2022) Evolution of the dynamic solid electrolyte interphase in Mg electrolytes for rechargeable Mg-ion batteries. ACS Appl Mater Interfaces 14:46635–46645. https://doi.org/10.1021/acsami.2c13037

    Article  CAS  Google Scholar 

  48. Wang J, Li YY, Deng L, Wei NN, Weng YK, Dong S, Qi DP, Qiu J, Chen XD, Wu T (2017) High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv Mater 29:1603730. https://doi.org/10.1002/adma.201603730

    Article  CAS  Google Scholar 

  49. Liu HW, Chen CJ, Wen H, Guo RX, Williams NA, Wang BD, Chen FJ, Hu LB (2018) Narrow bandgap semiconductor decorated wood membrane for high-efficiency solar-assisted water purification. J Mater Chem A 6:18839–18846. https://doi.org/10.1039/c8ta05924a

    Article  CAS  Google Scholar 

  50. Ren HY, Tang M, Guan BL, Wang KX, Yang JW, Wang FF, Wang MZ, Shan JY, Chen ZL, Wei D, Peng HL, Liu ZF (2017) Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Adv Mater 29:130427. https://doi.org/10.1002/adma.201702590

    Article  CAS  Google Scholar 

  51. Zhang PP, Liu F, Liao QH, Yao HZ, Geng HY, Cheng HH, Li C, Qu LT (2018) A Microstructured graphene/poly(N-isopropylacrylamide) membrane for intelligent solar water evaporation. Angew Chem Int Edit 57:16343–16347. https://doi.org/10.1002/anie.201810345

    Article  CAS  Google Scholar 

  52. Li YJ, Gao TT, Yang Z, Chen CJ, Luo W, Song JW, Hitz E, Jia C, Zhou YB, Liu BY, Yang B, Hu LB (2017) 3D-printed, all-in-one evaporator for high-efficiency solar steam generation under 1 sun illumination. Adv Mater 29:1700981. https://doi.org/10.1002/adma.201700981

    Article  CAS  Google Scholar 

  53. Zhou XY, Zhao F, Guo YH, Zhang Y, Yu GH (2018) A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy Environ Sci 11:1985–1992. https://doi.org/10.1039/c8ee00567b

    Article  CAS  Google Scholar 

  54. Zhang P, Xie MH, Jin YB, Jin CD, Wang Z (2022) A bamboo-based photothermal conversion device for efficient solar steam generation. ACS Appl Polym Mater 4:2393–2400. https://doi.org/10.1021/acsapm.1c01681

    Article  CAS  Google Scholar 

  55. Chen QM, Pei ZQ, Xu YS, Li Z, Yang Y, Wei Y, Ji Y (2018) A durable monolithic polymer foam for efficient solar steam generation. Chem Sci 9:1392–1392. https://doi.org/10.1039/c8sc90011f

    Article  CAS  Google Scholar 

  56. Zou Y, Chen XF, Guo WC, Liu XH, Li YW (2020) Flexible and robust polyaniline composites for highly efficient and durable solar desalination. ACS Appl Energ Mater 3:2634–2642. https://doi.org/10.1021/acsaem.9b02341

    Article  CAS  Google Scholar 

  57. Jang H, Choi J, Lee H, Jeon S (2020) Corrugated wood fabricated using laser-induced graphitization for salt-resistant solar steam generation. ACS Appl Mater Interfaces 12:30320–30327. https://doi.org/10.1021/acsami.0c05138

    Article  CAS  Google Scholar 

  58. He F, Han MC, Zhang J, Wang ZX, Wu XC, Zhou YY, Jiang LF, Peng SQ, Li YX (2020) A simple, mild and versatile method for preparation of photothermal woods toward highly efficient solar steam generation. Nano Energy 71:104650. https://doi.org/10.1016/j.nanoen.2020.104650

    Article  CAS  Google Scholar 

  59. Shi L, Zhang M, Du XL, Liu BX, Li SX, An CC (2022) In situ polymerization of pyrrole on elastic wood for high efficiency seawater desalination and oily water purification. J Mater Sci 57:16317–16332. https://doi.org/10.1007/s10853-022-07632-8

    Article  CAS  Google Scholar 

  60. Zhang M, Shi L, Du XL, Li ZR, Shi YH, An CC, Li J, Wang CY, Shi JY (2022) Janus mesoporous wood-based membrane for simultaneous oil/water separation, aromatic dyes removal, and seawater desalination. Ind Crops Prod 188:115643. https://doi.org/10.1016/j.indcrop.2022.115643

    Article  CAS  Google Scholar 

  61. Wang YF, Wan YQ, Meng XQ, Jiang L, Wei H, Zhang XY, Ma N (2022) Bio-inspired MXene coated wood-like ordered chitosan aerogels for efficient solar steam generating devices. J Mater Sci 57:13962–13973. https://doi.org/10.1007/s10853-022-07494-0

    Article  CAS  Google Scholar 

  62. Guan Q-F, Han Z-M, Ling Z-C, Yang H-B, Yu S-H (2020) Sustainable wood-based hierarchical solar steam generator: a biomimetic design with reduced vaporization enthalpy of water. Nano Lett 20:5699–5704. https://doi.org/10.1021/acs.nanolett.0c01088

    Article  CAS  Google Scholar 

  63. Lu Y, Fan DQ, Shen ZY, Zhang H, Xu HL, Yang XF (2022) Design and performance boost of a MOF-functionalized-wood solar evaporator through tuning the hydrogen-bonding interactions. Nano Energy 95:107016. https://doi.org/10.1016/j.nanoen.2022.107016

    Article  CAS  Google Scholar 

  64. Meng TT, Li ZT, Wan ZM, Zhang J, Wang LZ, Shi KJ, Bu XT, Alshehri SM, Bando Y, Yamauchi Y, Li DG, Xu XT (2023) MOF-derived nanoarchitectured carbons in wood sponge enable solar-driven pumping for high-efficiency soil water extraction. Chem Eng J 452:139193. https://doi.org/10.1016/j.cej.2022.139193

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (Grant nos. 52274228), the Youth Innovation Team of Shaanxi Universities (Grant nos. 21JP068), the Shaanxi Provincial Science and Technology Department (Grant nos. 2019JM-371), the Outstanding Youth Science Fund of Xi’an University of Science and Technology (Grant nos. 2019YQ2-09), and Huyang Scholar Program of Xi’an University of Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

YJ performed the experiment and drafted the manuscript. JG and YZ helped to prepare the material. MY, YX, XL and HL assisted in the data analysis and discussion. MQ and JH supervised the project and finalized the manuscript. All authors have given approval to the final manuscript.

Corresponding authors

Correspondence to Mengnan Qu or Jinmei He.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

Not applicable.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2934 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, M., Yan, J., Ge, J. et al. Nature-inspired wood-based solar evaporation system for efficient desalination and water purification. J Mater Sci 58, 6220–6236 (2023). https://doi.org/10.1007/s10853-023-08420-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08420-8

Navigation