Skip to main content
Log in

Spatially Confined MXene/PVDF Nanofiber Piezoelectric Electronics

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Piezoelectric nanofibers have received extensive attention in the field of electronic devices, but they are still restricted for further development, due to their limited dipole arrangement. Herein, we propose spatially confined MXene/polyvinylidene fluoride (PVDF) nanofibers for piezoelectric application, with dual functions of pressure sensing and energy harvesting. The spatial confinement of MXene/PVDF nanofibers can actively induce the optimally aligned –CH2–/–CF2– dipoles of PVDF and dramatically boost spontaneous polarization for piezoelectric enhancement. The voltage and current generated by fabricated MXene/PVDF (0.8 wt%) nanofiber piezoelectric electronic devices  are respectively 3.97 times and 10.1 times higher than those generated by pure PVDF nanofibers. Based on these results, the developed bifunctional electronic devices are applied to monitor various human movements and to harvest energy. Notably, the results of this work allow for the development of nanofibers with excellent piezoelectric performance using a spatial confinement mechanism.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liu Y, Aziguli H, Zhang B, Xu WH, Lu WC, Bernholc J, Wang Q. Ferroelectric polymers exhibiting behaviour reminiscent of a morphotropic phase boundary. Nature. 2018;562:96.

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Peng Z, Shi J, Xiao X, Hong Y, Li X, Zhang W, Cheng Y, Wang Z, Li WJ, Chen J, Leung MKH, Yang Z. Self-charging electrostatic face masks leveraging triboelectrification for prolonged air filtration. Nat Commun. 2022;13:7835.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shen L, Shi Q, Zhang SP, Gao J, Cheng DC, Yi M, Song RY, Wang LD, Jiang JW, Karnik R, Zhang S. Highly porous nanofiber-supported monolayer graphene membranes for ultrafast organic solvent nanofiltration. Sci Adv. 2021;7:abg6263.

    Article  ADS  Google Scholar 

  4. Su CC, Huang XC, Zhang LL, Zhang YZ, Yu ZH, Chen C, Ye YM, Guo SS. Robust superhydrophobic wearable piezoelectric nanogenerators for self-powered body motion sensors. Nano Energy. 2023;107:108095.

    Article  CAS  Google Scholar 

  5. Kang S, Kim SH, Lee HB, Mhin S, Ryu JH, Kim YW, Jones JL, Son Y, Lee NK, Lee K, Kim Y, Jung KH, Han H, Park SH, Kim KM. High-power energy harvesting and imperceptible pulse sensing through peapod-inspired hierarchically designed piezoelectric nanofibers. Nano Energy. 2022;99:107386.

    Article  CAS  Google Scholar 

  6. Yang T, Pan H, Tian G, Zhang BB, Xiong D, Gao YY, Yan C, Chu X, Chen NJ, Zhong S, Zhang L, Deng WL, Yang WQ. Hierarchically structured PVDF/ZnO core-shell nanofibers for self-powered physiological monitoring electronics. Nano Energy. 2020;72:104706.

    Article  Google Scholar 

  7. Qian X, Chen X, Zhu L, Zhang QM. Fluoropolymer ferroelectrics: multifunctional platform for polar-structured energy conversion. Science. 2023;380:eadg0902.

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Guo MF, Guo CQ, Han J, Chen SL, He S, Tang TX, Li Q, Strzalka J, Ma J, Yi S, Wang K, Xu B, Gao P, Huang HB, Chen LQ, Zhang SJ, Lin YH, Nan CW, Shen Y. Toroidal polar topology in strained ferroelectric polymer. Science. 2021;371:1050.

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Wan C, Bowen CR. Multiscale-structuring of polyvinylidene fluoride for energy harvesting: the impact of molecular-, micro- and macro-structure. J Mater Chem A. 2017;5:3091.

    Article  CAS  Google Scholar 

  10. Wang ZX, Liao WQ. Giant electromechanical effects in polymers. Science. 2022;375:1353.

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Xu CZ, Cheong JY, Mo XM, Jérôme V, Freitag R, Agarwal S, Gharibi R, Greiner A. Thoroughly hydrophilized electrospun poly(l-lactide)/poly(ε‐caprolactone) sponges for tissue engineering application. Macromol Biosci. 2023; 2300143.

  12. Bulemo PM, Cheong JY. Review on porosity control in nanostructured semiconducting metal oxides and its influence on chemiresistive gas sensing. ACS Appl Nano Mater. 2023;6:1027.

    Article  CAS  Google Scholar 

  13. Yoon H, Cheong JY, Yun TG, Hwang B. Cellulose fiber-based, yarn-based, and textile-based hydroelectric nanogenerators: a mini-review. Cellulose. 2023;30:4071.

    Article  CAS  Google Scholar 

  14. Persano L, Dagdeviren C, Su YW, Zhang YH, Girardo S, Pisignano D, Huang YG, Rogers JA. High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat Commun. 2013;4:1633.

    Article  ADS  PubMed  Google Scholar 

  15. Lan BL, Xiao X, Carlo AD, Deng WL, Yang T, Jin L, Tian G, Ao Y, Yang WQ, Chen J. Topological nanofibers enhanced piezoelectric membranes for soft bioelectronics. Adv Funct Mater. 2022;32:2207393.

    Article  CAS  Google Scholar 

  16. Chai B, Shi KM, Wang YL, Liu YJ, Liu F, Jiang PK, Sheng GH, Wang SJ, Xu P, Xu XY, Huang XY. Modulus-modulated all-organic core-shell nanofiber with remarkable piezoelectricity for energy harvesting and condition monitoring. Nano Lett. 2023;23:1810.

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Lan BL, Yang T, Tian G, Ao Y, Jin L, Xiong D, Wang SL, Zhang HR, Deng L, Sun Y, Zhang JL, Deng WL, Yang WQ. Multichannel gradient piezoelectric transducer assisted with deep learning for broadband acoustic sensing. ACS Appl Mater Interfaces. 2023;15:12146.

    Article  CAS  PubMed  Google Scholar 

  18. Yousry YM, Yao K, Mohamed AM, Liew WH, Chen S, Ramakrishna S. Theoretical model and outstanding performance from constructive piezoelectric and triboelectric mechanism in electrospun PVDF fiber film. Adv Funct Mater. 2020;30:1910592.

    Article  CAS  Google Scholar 

  19. Shi KM, Sun B, Huang XY, Jiang PK. Synergistic effect of graphene nanosheet and BaTiO3 nanoparticles on performance enhancement of electrospun PVDF nanofiber mat for flexible piezoelectric nanogenerators. Nano Energy. 2018;52:153.

    Article  CAS  Google Scholar 

  20. Wang S, Shao HQ, Liu Y, Tang CY, Zhao X, Ke K, Bao RY, Yang MB, Yang W. Boosting piezoelectric response of PVDF-TrFE via MXene for self-powered linear pressure sensor. Compos Sci Technol. 2021;202:108600.

    Article  CAS  Google Scholar 

  21. Bhatta T, Maharjan P, Cho H, Park C, Yoon SH, Sharma S, Salauddin M, Rahman MT, Rana SMS, Park JY. High-performance triboelectric nanogenerator based on MXene functionalized polyvinylidene fluoride composite nanofibers. Nano Energy. 2021;81:105670.

    Article  CAS  Google Scholar 

  22. Karan SK, Mandal D, Khatua BB. Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester. Nanoscale. 2015;7:10655.

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Su YJ, Li WX, Yuan L, Chen CX, Pan H, Xie GZ, Conta G, Ferrier S, Zhao X, Chen GR, Tai HL, Jiang YD, Chen J. Piezoelectric fiber composites with polydopamine interfacial layer for self-powered wearable biomonitoring. Nano Energy. 2021;89:106321.

    Article  CAS  Google Scholar 

  24. Tamang A, Ghosh SK, Garain S, Alam MM, Haeberle J, Henkel K, Schmeisser D, Mandal D. DNA-Assisted beta-phase nucleation and alignment of molecular dipoles in PVDF film: a realization of self-poled bioinspired flexible polymer nanogenerator for portable electronic devices. ACS Appl Mater Interfaces. 2015;7:16143.

    Article  CAS  PubMed  Google Scholar 

  25. Shen ZH, Wang JJ, Jiang JY, Huang SX, Lin YH, Nan CW, Chen LQ, Shen Y. Phase-field modeling and machine learning of electric-thermal-mechanical breakdown of polymer-based dielectrics. Nat Commun. 2019;10:1843.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  26. Zhang YC, Zheng N, Cao Y, Wang FL, Wang P, Ma YJ, Lu BW, Hou GH, Fang ZZ, Liang ZW, Yue MK, Li Y, Chen Y, Fu J, Wu J, Xie T, Feng X. Climbing-inspired twining electrodes using shape memory for peripheral nerve stimulation and recording. Sci Adv. 2019;5:aaw1066.

    Article  ADS  Google Scholar 

  27. Huang X, Wang YY, Zhang XX. Ultrarobust, hierarchically anisotropic structured piezoelectric nanogenerators for self-powered sensing. Nano Energy. 2022;99:107379.

    Article  CAS  Google Scholar 

  28. Hong Y, Wang B, Lin WK, Jin LH, Liu SY, Luo XW, Pan J, Wang WP, Yang ZB. Highly anisotropic and flexible piezoceramic kirigami for preventing joint disorders. Sci Adv. 2021;7:abf0795.

    Article  ADS  Google Scholar 

  29. He LR, Lu J, Han C, Liu XG, Liu JF, Zhang CH. Electrohydrodynamic pulling consolidated high-efficiency 3D printing to architect unusual self-polarized beta-PVDF arrays for advanced piezoelectric sensing. Small. 2022;18:2200114.

    Article  CAS  Google Scholar 

  30. Lo WC, Chen CC, Fuh YK. 3D stacked near-field electrospun nanoporous PVDF‐TrFE nanofibers as self‐powered smart sensing in gait big data analytics. Adv Mater Technol. 2021;6:2000779.

    Article  CAS  Google Scholar 

  31. Kim J, Jang M, Jeong G, Yu S, Park J, Lee Y, Cho S, Yeom J, Lee Y, Choe A, Kim YR, Yoon Y, Lee SS, An KS, Ko H. MXene-enhanced β-phase crystallization in ferroelectric porous composites for highly-sensitive dynamic force sensors. Nano Energy. 2021;89:106409.

    Article  CAS  Google Scholar 

  32. Zhang MD, Liu CK, Li BY, Shen YT, Wang H, Ji KY, Mao X, Wei L, Sun RJ, Zhou FL. Electrospun PVDF-based piezoelectric nanofibers: materials, structures, and applications. Nanoscale Adv. 2023;5:1043.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Su YJ, Li WX, Cheng XX, Zhou YH, Yang S, Zhang X, Chen CX, Yang TN, Pan H, Xie GZ, Chen GR, Zhao X, Xiao X, Li B, Tai HL, Jiang YD, Chen LQ, Li F, Chen J. High-performance piezoelectric composites via beta phase programming. Nat Commun. 2022;13:4867.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhao Y, Gao WC, Dai K, Wang S, Yuan ZQ, Li JN, Zhai W, Zheng GQ, Pan CF, Liu CT, Shen CY. Bioinspired multifunctional photonic-electronic smart skin for ultrasensitive health monitoring, for visual and self-powered sensing. Adv Mater. 2021;33:2102332.

    Article  CAS  Google Scholar 

  35. Xiong D, Deng WL, Tian G, Zhang BB, Zhong S, Xie YT, Yang T, Zhao HB, Yang WQ. Controllable in-situ-oxidization of 3D-networked Ti3C2T-TiO2 photodetectors for large-area flexible optical imaging. Nano Energy. 2022;93:106889.

    Article  CAS  Google Scholar 

  36. Yun J, Park J, Ryoo M, Kitchamsetti N, Goh TS, Kim D. Piezo-triboelectric hybridized nanogenerator embedding MXene based bifunctional conductive filler in polymer matrix for boosting electrical power. Nano Energy. 2023;105:108018.

    Article  CAS  Google Scholar 

  37. Wang SL, Deng WL, Yang T, Ao Y, Zhang HR, Tian G, Deng L, Huang HC, Huang JF, Lan BL, Yang WQ. Bioinspired MXene-based piezoresistive sensor with two‐stage enhancement for motion capture. Adv Funct Mater. 2023;33:2214503.

    Article  CAS  Google Scholar 

  38. Halim J, Cook KM, Naguib M, Eklund P, Gogotsi Y, Rosen J, Barsoum MW. X-Ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl Surf Sci. 2016;362:406.

    Article  ADS  CAS  Google Scholar 

  39. Tian G, Deng WL, Xiong D, Yang T, Zhang BB, Ren XR, Lan BL, Zhong S, Jin L, Zhang HR, Deng L, Yang WQ. Dielectric micro-capacitance for enhancing piezoelectricity via aligning MXene sheets in composites. Cell Rep Phys Sci. 2022;3:100814.

    Article  CAS  Google Scholar 

  40. Martins P, Lopes AC, Lanceros-Mendez S. Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog Polym Sci. 2014;39:683.

    Article  CAS  Google Scholar 

  41. Li T, Qu MH, Carlos C, Gu L, Jin F, Yuan T, Wu XW, Xiao JJ, Wang T, Dong W, Wang XD, Feng ZQ. High-performance poly(vinylidene difluoride)/dopamine core/shell piezoelectric nanofiber and its application for biomedical sensors. Adv Mater. 2021;33:2006093.

    Article  CAS  Google Scholar 

  42. Li T, Feng ZQ, Qu MH, Yan K, Yuan T, Gao BB, Wang T, Dong W, Zheng J. Core/shell piezoelectric nanofibers with spatial self-orientated beta-phase nanocrystals for real-time micropressure monitoring of cardiovascular walls. ACS Nano. 2019;13:10062.

    Article  CAS  PubMed  Google Scholar 

  43. Shepelin NA, Sherrell PC, Skountzos EN, Goudeli E, Zhang J, Lussini VC, Imtiaz B, Usman KAS, Dicinoski GW, Shapter JG, Razal JM, Ellis AV. Interfacial piezoelectric polarization locking in printable Ti3C2Tx MXene-fluoropolymer composites. Nat Commun. 2021;12:3171.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xi BB, Wang LL, Yang B, Xia YF, Chen DL, Wang X. Boosting output performance of triboelectric nanogenerator based on BaTiO3:La embedded nanofiber membrane for energy harvesting and wireless power transmission. Nano Energy. 2023;110:108385.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Postdoctoral Innovation Talents Support Program (No. BX20220257), the Multiple Clean Energy Harvesting System (No. YYF20223026), the Sichuan Science and Technology Program (No. 2023NSFSC0313), and a Catalyst Seeding General Grant administered by the Royal Society of New Zealand (Contract 20-UOA-035-CSG). The authors are grateful for the help from the Analysis and Testing Center of Southwest Jiaotong University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Long Jin or Weiqing Yang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6131.5 kb)

Supplementary material 1 (MP4 70989 kb)

Supplementary material 3 (MP4 77151 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Yang, T., Tian, G. et al. Spatially Confined MXene/PVDF Nanofiber Piezoelectric Electronics. Adv. Fiber Mater. 6, 133–144 (2024). https://doi.org/10.1007/s42765-023-00337-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00337-w

Keywords

Navigation