Skip to main content
Log in

Superhydrophobic MXene-Based Fabric with Electromagnetic Interference Shielding and Thermal Management Ability for Flexible Sensors

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Smart fabrics have made remarkable progress in the field of wearable electronics because of their unique structure, flexibility and breathability, which are highly desirable with integrated multifunctionality. Here, a superhydrophobic smart fabric has been fabricated by decorating conductive MXene on nylon fabric modified by polydopamine (PDA), followed by spraying hydrophobic materials (SiO2 and FOTS). The hydrophobic layer not only provides the fabric with superhydrophobicity, but also protects MXene from oxidation. Highly conductive MXene-wrapped fibers endow the fabric with adjustable conductivity and many satisfactory functions. Commendably, the smart fabric possesses sensing performances of ultralow detection limit (0.2% strain), fast response time (60 ms), short recovery time (90 ms), and outstanding sensing stability (5000 cycles). These sensing performances allow the smart fabric to accurately detect body respiratory signals in the running state, exercise state and sleep state, thus keeping track of respiratory health information. Moreover, the smart fabric also exhibits outstanding EMI shielding effectiveness (66.5 dB) in the X-band, satisfactory photothermal performance (68.6 °C at 100 mW/cm2), and excellent electrothermal conversion capability (up to 102.3 °C at 8 V). Therefore, the smart fabric is extremely promising for applications in EMI shielding, thermal management, and respiratory monitoring, and is an ideal candidate for smart clothing and as a medical diagnostic tool.

Graphical Abstract

It is of great significance to develop smart fabric with outstanding mechanical robustness and environmental stability under harsh conditions for its practical applications. A superhydrophobic fabric has been fabricated with integrated sensing capacity, EMI shielding effectiveness, electrothermal performance and photothermal performance, which enable the smart fabric to work in harsh conditions, indicating an ideal candidate for smart clothing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data is available when required.

References

  1. Ye C, Yang S, Ren J, Dong S, Cao L, Pei Y, Ling S. Electroassisted core-spun triboelectric nanogenerator fabrics for intellisense and artificial intelligence perception. ACS Nano. 2022;16:4415.

    Article  CAS  Google Scholar 

  2. Yi J, Dong K, Shen S, Jiang Y, Peng X, Ye C, Wang ZL. Fully fabric-based triboelectric nanogenerators as self-powered human-machine interactive keyboards. Nano-micro Lett. 2021;13:103.

    Article  CAS  Google Scholar 

  3. Wang QW, Zhang HB, Liu J, Zhao S, Xie X, Liu L, Yang R, Koratkar N, Yu ZZ. Multifunctional and water-resistant mxene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances. Adv Funct Mater. 2019;29:1806819.

    Article  Google Scholar 

  4. Liu LX, Chen W, Zhang HB, Wang QW, Guan F, Yu ZZ. Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv Funct Mater. 2019;29:1905197.

    Article  CAS  Google Scholar 

  5. Hajiaghajani A, Afandizadeh Zargari AH, Dautta M, Jimenez A, Kurdahi F, Tseng P. Textile-integrated metamaterials for near-field multibody area networks. Nat Electron. 2021;4:808.

    Article  Google Scholar 

  6. Lin R, Kim HJ, Achavananthadith S, Kurt SA, Tan SCC, Yao H, Tee BCK, Lee JKW, Ho JS. Wireless battery-free body sensor networks using near-field-enabled clothing. Nat Commun. 2020;11:444.

    Article  CAS  Google Scholar 

  7. Liu M, Pu X, Jiang C, Liu T, Huang X, Chen L, Du C, Sun J, Hu W, Wang ZL. Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv Mater. 2017;29:1703700.

    Article  Google Scholar 

  8. Liu X, Miao J, Fan Q, Zhang W, Zuo X, Tian M, Zhu S, Zhang X, Qu L. Smart textile based on 3D stretchable silver nanowires/MXene conductive networks for personal healthcare and thermal management. ACS Appl Mater Interfaces. 2021;13:56607.

    Article  CAS  Google Scholar 

  9. Hong S, Shin S, Chen R. An adaptive and wearable thermal camouflage device. Adv Funct Mater. 2020;30:1909788.

    Article  CAS  Google Scholar 

  10. Wang C, Zhang W, Xu X, Su J, Shi J, Amin MA, Zhang J, Yamauchi Y. Multifunctional wearable thermal management textile fabricated by one-step sputtering. Nano Today. 2022;45: 101526.

    Article  CAS  Google Scholar 

  11. Kim JG, Yun T, Chae J, Yang GG, Lee GS, Kim IH, Jung HJ, Hwang HS, Kim JT, Choi SQ, Kim SO. Molecular-level lubrication effect of 0D nanodiamonds for highly bendable graphene liquid crystalline fibers. ACS Appl Mater Interfaces. 2022;14:13601.

    Article  CAS  Google Scholar 

  12. Li J, Ding Q, Wang H, Wu Z, Gui X, Li C, Hu N, Tao K, Wu J. Engineering smart composite hydrogels for wearable disease monitoring. Nanomicro Lett. 2023;15:105.

    CAS  Google Scholar 

  13. Wu J, Huang W, Wu Z, Yang X, Kottapalli AGP, Xie X, Zhou Y, Tao K. Hydrophobic and stable graphene-modified organohydrogel based sensitive, stretchable, and self-healable strain sensors for human-motion detection in various scenarios. ACS Materials Lett. 2022;4:1616.

    Article  CAS  Google Scholar 

  14. Zhai K, Wang H, Ding Q, Wu Z, Ding M, Tao K, Yang BR, Xie X, Li C, Wu J. High-performance strain sensors based on organohydrogel microsphere film for wearable human-computer interfacing. Adv Sci. 2023;10: e2205632.

    Article  Google Scholar 

  15. Che RC, Peng LM, Duan XF, Chen Q, Liang XL. Microwave absorption enhancement and complex permittivity and permeability of fe encapsulated within carbon nanotubes. Adv Mater. 2004;16:401.

    Article  CAS  Google Scholar 

  16. Liu Q, Cao Q, Bi H, Liang C, Yuan K, She W, Yang Y, Che R. CoNi@SiO2 @TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv Mater. 2016;28:486.

    Article  CAS  Google Scholar 

  17. Sun H, Che R, You X, Jiang Y, Yang Z, Deng J, Qiu L, Peng H. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv Mater. 2014;26:8120.

    Article  CAS  Google Scholar 

  18. Wu Z, Cheng HW, Jin C, Yang B, Xu C, Pei K, Zhang H, Yang Z, Che R. Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv Mater. 2022;34: e2107538.

    Article  Google Scholar 

  19. Wu Z, Pei K, Xing L, Yu X, You W, Che R. Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite. Adv Funct Mater. 2019;29:1901448.

    Article  Google Scholar 

  20. Che RC, Zhi CY, Liang CY, Zhou XG. Fabrication and microwave absorption of carbon nanotubes/CoFe2O4 spinel nanocomposite. Appl Phys Lett. 2006;88: 033105.

    Article  Google Scholar 

  21. Wu F, Lan B, Cheng Y, Zhou Y, Hossain G, Grabher G, Shi L, Wang R, Sun J. A stretchable and helically structured fiber nanogenerator for multifunctional electronic textiles. Nano Energy. 2022;101: 107588.

    Article  CAS  Google Scholar 

  22. Wei Y, Li X, Wang Y, Hirtz T, Guo Z, Qiao Y, Cui T, Tian H, Yang Y, Ren TL. Graphene-based multifunctional textile for sensing and actuating. ACS Nano. 2021;15:17738.

    Article  CAS  Google Scholar 

  23. Yi P, Zou H, Yu Y, Li X, Li Z, Deng G, Chen C, Fang M, He J, Sun X, Liu X, Shui J, Yu R. MXene-reinforced liquid metal/polymer fibers via interface engineering for wearable multifunctional textiles. ACS Nano. 2022;16:14490.

    Article  CAS  Google Scholar 

  24. Yu Z, Deng C, Seidi F, Yong Q, Lou Z, Meng L, Liu J, Huang C, Liu Y, Wu W, Han J, Xiao H. Air-permeable and flexible multifunctional cellulose-based textiles for bio-protection, thermal heating conversion, and electromagnetic interference shielding. J Mater Chem A. 2022;10:17452.

    Article  CAS  Google Scholar 

  25. Zhang D, Yin R, Zheng Y, Li Q, Liu H, Liu C, Shen C. Multifunctional MXene/CNTs based flexible electronic textile with excellent strain sensing, electromagnetic interference shielding and Joule heating performances. Chem Eng J. 2022;438: 135587.

    Article  CAS  Google Scholar 

  26. Zhang JZ, Liu J, Zhao ZY, Sun WW, Zhao GJ, Liu JG, Xu JC, Li YL,Liu ZK, Li Y, Li G. Calotropis gigantea fiber‑based sensitivity‑tunable strain sensors with insensitive response to wearable microclimate changes. Adv Fiber Mater. 2023, https:// https://doi.org/10.1007/s42765-023-00270-y.

  27. Li E, Pan Y, Wang C, Liu C, Shen C, Pan C, Liu X. Asymmetric superhydrophobic textiles for electromagnetic interference shielding, photothermal conversion, and solar water evaporation. ACS Appl Mater Interfaces. 2021;13:28996.

    Article  CAS  Google Scholar 

  28. Lu DX, Liao SQ, Chu Y, Cai YB, Wei QF, Chen KL, Wang QQ. Highly durable and fast response fabric strain sensor for movement monitoring under extreme conditions. Adv Fiber Mater. 2022. https://doi.org/10.1007/s42765-022-00211-1.

    Article  Google Scholar 

  29. Hossain MM, Lubna MM, Bradford PD. Multifunctional and washable carbon nanotube-wrapped textile yarns for wearable e-textiles. ACS Appl Mater Interfaces. 2023;15:3365.

    Article  CAS  Google Scholar 

  30. Zhai W, Wang C, Wang S, Li J, Zhao Y, Zhan P, Dai K, Zheng G, Liu C, Shen C. Ultra-stretchable and multifunctional wearable electronics for superior electromagnetic interference shielding, electrical therapy and biomotion monitoring. J Mater Chem A. 2021;9:7238.

    Article  CAS  Google Scholar 

  31. Chen Y, Xu B, Gong J, Wen J, Hua T, Kan CW, Deng J. Design of High-performance wearable energy and sensor electronics from fiber materials. ACS Appl Mater Interfaces. 2019;11:2120.

    Article  CAS  Google Scholar 

  32. Lin F, Li W, Du X, Chen N, Wu Y, Tang Y, Jiang J. Electrically conductive silver/polyimide fabric composites fabricated by spray-assisted electroless plating. Appl Surf Sci. 2019, 493.

  33. Chatterjee K, Ghosh TK. 3D printing of textiles: potential roadmap to printing with fibers. Adv Mater. 2020;32:1902086.

    Article  CAS  Google Scholar 

  34. Chen Y, Deng Z, Ouyang R, Zheng R, Jiang Z, Bai H, Xue H. 3D printed stretchable smart fibers and textiles for self-powered e-skin. Nano Energy. 2021;84: 105866.

    Article  CAS  Google Scholar 

  35. Marra F, Minutillo S, Tamburrano A, Sarto MS. Production and characterization of Graphene Nanoplatelet-based ink for smart textile strain sensors via screen printing technique. Mater Design. 2021;198: 109306.

    Article  CAS  Google Scholar 

  36. Duan Q, Lu Y. Silk sericin as a green adhesive to fabricate a textile strain sensor with excellent electromagnetic shielding performance. ACS Appl Mater Interfaces. 2021;13:28832.

    Article  CAS  Google Scholar 

  37. Nie X, Wu S, Huang F, Wang Q, Wei Q. Smart textiles with self-disinfection and photothermochromic effects. ACS Appl Mater Interfaces. 2021;13:2245.

    Article  CAS  Google Scholar 

  38. Peng J, Wang B, Cheng H, Yang R, Yin Y, Xu S, Wang C. Highly sensitive and superhydrophobic fabric sensor based on AgNPs/Polypyrrole composite conductive networks for body movement monitoring. Compos Sci Technol. 2022;227: 109561.

    Article  CAS  Google Scholar 

  39. Wang B, Peng J, Yang K, Cheng H, Yin Y, Wang C. Multifunctional textile electronic with sensing, energy storing, and electrothermal heating capabilities. ACS Appl Mater Interfaces. 2022;14:22497.

    Article  CAS  Google Scholar 

  40. Lee GS, Yun T, Kim H, Kim IH, Choi J, Lee SH, Lee HJ, Hwang HS, Kim JG, Kim DW, Lee HM, Koo CM, Kim SO. Mussel inspired highly aligned Ti3C2Tx MXene film with synergistic enhancement of mechanical strength and ambient stability. ACS Nano. 2020;14:11722.

    Article  CAS  Google Scholar 

  41. Gao J, Luo J, Wang L, Huang X, Wang H, Song X, Hu M, Tang L-C, Xue H. Flexible, superhydrophobic and highly conductive composite based on non-woven polypropylene fabric for electromagnetic interference shielding. Chem Eng J. 2019;364:493.

    Article  CAS  Google Scholar 

  42. Luo J, Gao S, Luo H, Wang L, Huang X, Guo Z, Lai X, Lin L, Li RKY, Gao J. Superhydrophobic and breathable smart MXene-based textile for multifunctional wearable sensing electronics. Chem Eng J. 2021;406: 126898.

    Article  CAS  Google Scholar 

  43. Li DY, Liu LX, Wang QW, Zhang HB, Chen W, Yin G, Yu ZZ. Functional polyaniline/MXene/cotton fabrics with acid/alkali-responsive and tunable electromagnetic interference shielding performances. ACS Appl Mater Interfaces. 2022;14:12703.

    Article  CAS  Google Scholar 

  44. Li H, Dai J, Yi X, Cheng F. Generation of cost-effective MXene@polydopamine-decorated chitosan nanofibrous wound dressing for promoting wound healing. Biomater Adv. 2022;140: 213055.

    Article  CAS  Google Scholar 

  45. Kim SJ, Koh HJ, Ren CE, Kwon O, Maleski K, Cho SY, Anasori B, Kim CK, Choi YK, Kim J, Gogotsi Y, Jung HT. Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano. 2018;12:986.

    Article  CAS  Google Scholar 

  46. Yingchao Du, Zhang X, Wei L, Bo Yu, Ma D, Ye S. Electrodeposition of a Ni–P–TiO2/Ti3C2Tx Coating with in situ grown nanoparticles TiO2 on Ti3C2Tx Sheets. Coatings. 2019;9:750.

    Article  Google Scholar 

  47. Adepu V, Kamath K, Siddhartha S, Mattela V, Sahatiya P. MXene/TMD nanohybrid for the development of smart electronic textiles based on physical electromechanical sensors. Adv Mater Interfaces. 2021;9:2101687.

    Article  Google Scholar 

  48. Halim J, Lukatskaya MR, Cook KM, Lu J, Smith CR, Naslund LA, May SJ, Hultman L, Gogotsi Y, Eklund P, Barsoum MW. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem Mater. 2014;26:2374.

    Article  CAS  Google Scholar 

  49. Zhang X, Wang X, Lei Z, Wang L, Tian M, Zhu S, Xiao H, Tang X, Qu L. Flexible MXene-decorated fabric with interwoven conductive networks for integrated joule heating, electromagnetic interference shielding, and strain sensing performances. ACS Appl Mater Interfaces. 2020;12:14459.

    Article  CAS  Google Scholar 

  50. Wang L, Zhang M, Yang B, Tan J. Lightweight, robust, conductive composite fibers based on MXene@aramid nanofibers as sensors for smart fabrics. ACS Appl Mater Interfaces. 2021;13:41933.

    Article  CAS  Google Scholar 

  51. Wang B, Yang K, Cheng H, Ye T, Wang C. A hydrophobic conductive strip with outstanding one-dimensional stretchability for wearable heater and strain sensor. Chem Eng J. 2021;404: 126393.

    Article  CAS  Google Scholar 

  52. Wang B, Cheng H, Zhu J, Yuan Y, Wang C. A flexible and stretchable polypyrrole/knitted cotton for electrothermal heater. Org Electron. 2020;85: 105819.

    Article  CAS  Google Scholar 

  53. Ahn J, Gu J, Hwang B, Kang H, Hwang S, Jeon S, Jeong J, Park I. Printed fabric heater based on Ag nanowire/carbon nanotube composites. Nanotechnology. 2019;30: 455707.

    Article  CAS  Google Scholar 

  54. Hao Y, Tian M, Zhao H, Qu L, Zhu S, Zhang X, Chen S, Wang K, Ran J. High efficiency electrothermal graphene/tourmaline composite fabric joule heater with durable abrasion resistance via a spray coating route. Ind Eng Chem Res. 2018;57:13437.

    Article  CAS  Google Scholar 

  55. Pillai PS, Athira BS, Varghese H, Agarwal S, Kumar B, Alagirusamy R, Das A, Surendran KP, Chandran A. A resistive ink based all-printed fabric heater integrated wearable thermotherapy device. J Mater Sci-Mater El. 2023;34:1261.

    Article  CAS  Google Scholar 

  56. Xu D, Li Z, Li L, Wang J. Insights into the Photothermal Conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications. Adv Funct Mater. 2020;30:2000712.

    Article  CAS  Google Scholar 

  57. Dong J, Luo S, Ning S, Yang G, Pan D, Ji Y, Feng Y, Su F, Liu C. MXene-coated wrinkled fabrics for stretchable and multifunctional electromagnetic interference shielding and electro/photothermal conversion applications. ACS Appl Mater Interfaces. 2021;13:60478.

    Article  CAS  Google Scholar 

  58. Liu J, Wang P, Li G, Yang L, Yu W, Meng C, Guo S. A highly stretchable and ultra-sensitive strain sensing fiber based on a porous core-network sheath configuration for wearable human motion detection. Nanoscale. 2022;14:12418.

    Article  CAS  Google Scholar 

  59. Wang L, Tian M, Qi X, Sun X, Xu T, Liu X, Zhu S, Zhang X, Qu L. Customizable textile sensors based on helical core-spun yarns for seamless smart garments. Langmuir. 2021;37:3122.

    Article  CAS  Google Scholar 

  60. Li J, Wang L, Wang X, Yang Y, Hu Z, Liu L, Huang Y. Highly conductive PVA/Ag coating by aqueous in situ reduction and its stretchable structure for strain sensor. ACS Appl Mater Interfaces. 2020;12:1427.

    Article  CAS  Google Scholar 

  61. Gu C, Qin W, Wang Y, Li X, Wang J, Tian Z, Yang M, Qiao H, Wu Y, Yin S. Highly stretchable, durable, and superfine fiber-shaped strain sensor with a porous core-sheath microstructure. Compos Commun. 2022;36: 101381.

    Article  Google Scholar 

  62. Wang H, Li S, Wang Y, Wang H, Shen X, Zhang M, Lu H, He M, Zhang Y. Bioinspired fluffy fabric with in situ grown carbon nanotubes for ultrasensitive wearable airflow sensor. Adv Mater. 2020;32: e1908214.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21975107) and China Scholarship Council (no.202206790046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoxia Wang.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3435 KB)

Supplementary file2 (MP4 23944 KB)

Supplementary file3 (MP4 47410 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, J., Cheng, H., Liu, J. et al. Superhydrophobic MXene-Based Fabric with Electromagnetic Interference Shielding and Thermal Management Ability for Flexible Sensors. Adv. Fiber Mater. 5, 2099–2113 (2023). https://doi.org/10.1007/s42765-023-00328-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00328-x

Keywords

Navigation