Skip to main content
Log in

Revolutionizing Thermal Stability and Self-Healing in Pressure Sensors: A Novel Approach

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Soft electronics, which require mechanical elasticity, rely on elastic materials that have both a small Young’s modulus and a large elastic strain range. These materials, however, are prone to damage when stress accumulates, presenting a significant challenge for soft electronics. To address this issue, the integration of self-healing functionality into these materials appears to be a promising solution. Dynamic covalent bond chemistry has been utilized to design high-strength polymers with controllable reversibility. Nonetheless, the temperature needed to trigger self-healing may induce thermal damage to other parts of the device. In contrast, if the self-healing temperature is reduced, the device might suffer damage when exposed to temperatures exceeding the self-healing point due to the low stability of the polymer at high temperatures. These challenges highlight the need for materials that can self-heal at low temperatures while maintaining thermal stability at high temperatures. In response to this challenge, we propose a novel approach that involves forming a microfibrous network using polycaprolactone (PCL), a material with a low melting temperature of 60 °C that is widely utilized in shape memory and self-healing materials. We fabricated the conductive fiber by encapsulating a microfiber PCL network with MXene nanosheets. These MXene nanosheets were seamlessly coated on the PCL fiber’s surface to prevent shape deformation at high temperatures. Furthermore, they exhibited high thermal conductivity, facilitating rapid internal heat dissipation. Consequently, the MXene/PCL microfiber networks demonstrated self-healing capabilities at 60 °C and thermal stability above 200 °C. This makes them potentially suitable for stretchable, self-healing electronic devices that need to withstand high temperatures.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Kaltenbrunner M, Sekitani T, Reeder J, Yokota T, Kuribara K, Tokuhara T, Drack M, Schwödiauer R, Graz I, Bauer-Gogonea S, Bauer S, Someya T. An ultra-lightweight design for imperceptible plastic electronics. Nature. 2013;499:458.

    Article  CAS  Google Scholar 

  2. Kim DH, Lu N, Ma R, Kim YS, Kim RH, Wang S, Wu J, Won SM, Tao H, Islam A, Yu KJ, Kim TI, Chowdhury R, Ying M, Xu L, Li M, Chung HJ, Keum H, Mccormick M, Liu P, Zhang YW, Omenetto FG, Huang Y, Coleman T, Rogers JA. Epidermal electronics. Science. 2011;333:838.

    Article  CAS  Google Scholar 

  3. Kang J, Son D, Wang GJN, Liu Y, Lopez J, Kim Y, Oh JY, Katsumata T, Mun J, Lee Y, Jin L, Tok JBH, Bao Z. Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv Mater. 2018;30:1706846.

    Article  Google Scholar 

  4. Zhang Q, Jiang T, Ho D, Qin S, Yang X, Cho JH, Sun Q, Wang ZL. Transparent and self-powered multistage sensation matrix for mechanosensation application. ACS Nano. 2018;12:254.

    Article  CAS  Google Scholar 

  5. Cai J, Du M, Li Z. Flexible temperature sensors constructed with fiber materials. Adv Mater Technol. 2022;7:2101182.

    Article  Google Scholar 

  6. Lee Y, Kim BJ, Hu L, Hong J, Ahn JH. Morphable 3D structure for stretchable display. Mater Today. 2022;53:51.

    Article  CAS  Google Scholar 

  7. Yoo J, Li S, Kim DH, Yang J, Choi MK. Materials and design strategies for stretchable electroluminescent devices. Nanoscale Horiz. 2022;7:801.

    Article  CAS  Google Scholar 

  8. Mun J, Ochiai Y, Wang W, Zheng Y, Zheng YQ, Wu HC, Matsuhisa N, Higashihara T, Tok JBH, Yun Y, Bao Z. A design strategy for high mobility stretchable polymer semiconductors. Nat Commun. 2021;12:3572.

    Article  CAS  Google Scholar 

  9. Huang J, Lu Z, He J, Hu H, Liang Q, Liu K, Ren Z, Zhang Y, Yu H, Zheng Z, Li G. Intrinsically stretchable, semi-transparent organic photovoltaics with high efficiency and mechanical robustness via a full-solution process. Energy Environ Sci. 2023;16:1251.

    Article  CAS  Google Scholar 

  10. Cai S, Xu C, Jiang D, Yuan M, Zhang Q, Li Z, Wang Y. Air-permeable electrode for highly sensitive and noninvasive glucose monitoring enabled by graphene fiber fabrics. Nano Energy. 2022;2022:106904.

    Article  Google Scholar 

  11. Liu YL, Huang WH. Stretchable electrochemical sensors for cell and tissue detection. Angew Chem Int Ed. 2021;60:2757.

    Article  CAS  Google Scholar 

  12. Lee G, Zarei M, Wei Q, Zhu Y, Lee SG. Surface Wrinkling for Flexible and Stretchable Sensors. Small. 2022;18:2270225.

    Article  Google Scholar 

  13. Kim S, Kim S, Hong K, Dickey MD, Park S. Liquid-metal-coated magnetic particles toward writable, nonwettable, stretchable circuit boards, and directly assembled liquid metal-elastomer conductors. ACS Appl Mater Interfaces. 2022;14:37110.

    Article  CAS  Google Scholar 

  14. Chang Y, Sun J, Dong L, Jiao F, Chang S, Wang Y, Liao J, Shang Y, Wu W, Qi Y, Shan CX. Self-powered multi-color display based on stretchable self-healing alternating current electroluminescent devices. Nano Energy. 2022;95: 107061.

    Article  CAS  Google Scholar 

  15. Lv X, Liu Y, Yu J, Li Z, Ding B. Smart fibers for self-powered electronic skins. Adv Fiber Mater. 2023;5:401–28.

    Article  Google Scholar 

  16. Zhu M, Li J, Yu J, Li Z, Ding B. Superstable and intrinsically self-healing fibrous membrane with bionic confined protective structure for breathable electronic skin. Macromol Rapid Commun. 2022;61: e202200226.

    CAS  Google Scholar 

  17. Lee WJ, Oh HG, Cha SH. A brief review of self-healing polyurethane based on dynamic chemistry. Macromol Res. 2021;29:649.

    Article  CAS  Google Scholar 

  18. Cai S, Xu C, Jiang D, Yuan M, Zhang Q, Li Z, Wang Y. Self-healing fibrous membranes. Angew Chem Int Ed. 2022;61: e202208949.

    Article  Google Scholar 

  19. Islam S, Bhat G. Progress and challenges in self-healing composite materials. Mater Adv. 1896;2021:2.

    Google Scholar 

  20. Terryn S, Langenbach J, Roels E, Brancart J, Bakkali-Hassani C, Poutrel QA, Georgopoulou A, Thuruthel TG, Safaei A, Ferrentino P, Sebastian T, Norvez S, Iida F, Bosman AW, Tournilhac F, Clemens F, Assche GV, Vanderborght B. A review on self-healing polymers for soft robotics. Mater Today. 2021;47:187.

    Article  CAS  Google Scholar 

  21. Jun S, Kim SO, Lee HJ, Han CJ, Lee CJ, Yu YT, Lee CR, Ju BK, Kim Y, Kim JW. Transparent, pressure-sensitive, and healable e-skin from a UV-cured polymer comprising dynamic urea bonds. J Mater Chem A. 2019;7:3101.

    Article  CAS  Google Scholar 

  22. Wu P, Cheng H, Wang X, Shi R, Zhang C, Arai M, Zhao F. A self-healing and recyclable polyurethane-urea Diels–Alder adduct synthesized from carbon dioxide and furfuryl amine. Green Chem. 2021;23:552.

    Article  CAS  Google Scholar 

  23. Tu H, Zhou M, Gu Y, Gu Y. Conductive, self-healing, and repeatable graphene/carbon nanotube/polyurethane flexible sensor based on Diels–Alder chemothermal drive. Compos Sci Technol. 2022;225: 109476.

    Article  Google Scholar 

  24. Namin PA, Booth P, Silva JT, Voigt LJ, Zelisko PM. Transparent and thermoplastic silicone materials based on room-temperature Diels–Alder reactions. Macromolecules. 2023;56:2038.

    Article  Google Scholar 

  25. Lin X, Xie Q, Ma C, Zhang G. Self-healing, highly elastic and amphiphilic silicone-based polyurethane for antifouling coatings. J Mater Chem B. 2021;9:1384.

    Article  CAS  Google Scholar 

  26. Tiwari N, Ho F, Ankit A, Mathews N. A rapid low temperature self-healable polymeric composite for flexible electronic devices. J Mater Chem A. 2018;6:21428.

    Article  CAS  Google Scholar 

  27. Xu L, Chen Y, Yu M, Hou M, Gong G, Tan H, Li N, Xu J. NIR light-induced rapid self-healing hydrogel toward multifunctional applications in sensing. Nano Energy. 2023;107: 108119.

    Article  CAS  Google Scholar 

  28. Huang Y, Shi Z, Wang H, Wang J, Xue Z. Shape-memory and self-healing polyurethane-based solid polymer electrolytes constructed from polycaprolactone segment and disulfide metathesis. Energy Storage Mater. 2022;51:1.

    Article  Google Scholar 

  29. Thakur M, Majid I, Hussain S, Nanda V. Poly(ε-caprolactone): a potential polymer for biodegradable food packaging applications. Packag Technol Sci. 2021;34:449.

    Article  CAS  Google Scholar 

  30. Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011;23:4248.

    Article  CAS  Google Scholar 

  31. Li L, Cao Y, Liu X, Wang J, Yang Y, Wang W. Multifunctional MXene-based fireproof electromagnetic shielding films with exceptional anisotropic heat dissipation capability and joule heating performance. ACS Appl Mater Interfaces. 2020;12:27350.

    Article  CAS  Google Scholar 

  32. Zhao W, Qu X, Xu Q, Lu Y, Yuan W, Wang W, Wang Q, Huang W, Dong X. Ultrastretchable, self-healable, and wearable epidermal sensors based on ultralong Ag nanowires composited binary-networked hydrogels. Adv Electron Mater. 2020;6:2000267.

    Article  CAS  Google Scholar 

  33. Kim KS, Choi SB, Kim DU, Lee CR, Kim JW. Photo-induced healing of stretchable transparent electrodes based on thermoplastic polyurethane with embedded metallic nanowires. J Mater Chem A. 2018;6:12420.

    Article  CAS  Google Scholar 

  34. Kim MP, Kim YR, Ko H. Anisotropic silver nanowire dielectric composites for self-healable triboelectric sensors with multi-directional tactile sensitivity. Nano Energy. 2022;92: 106704.

    Article  CAS  Google Scholar 

  35. Wang L, Chen L, Song P, Liang C, Lu Y, Qiu H, Zhang Y, Kong J, Gu J. Fabrication on the annealed Ti3C2Tx MXene/epoxy nanocomposites for electromagnetic interference shielding application. Compos B Eng. 2019;171:111.

    Article  CAS  Google Scholar 

  36. Guo L, Jiang WY, Shen M, Xu C, Ding CX, Zhao SF, Yuan TT, Wang CY, Zhang XQ, Wang JQ. High capacitance of MXene (Ti3C2Tx) through intercalation and surface modification in molten salt. Electrochim Acta. 2022;401: 139476.

    Article  CAS  Google Scholar 

  37. Saha A, Shpigel N, Rosy LN, Taragin S, Sharabani T, Aviv H, Perelshtein I, Nessim GD, Noked M, Gogotsi Y. Enhancing the energy storage capabilities of Ti3C2Tx MXene electrodes by atomic surface reduction. Adv Funct Mater. 2021;31:2106294.

    Article  CAS  Google Scholar 

  38. Rosenkranz A, Grützmacher PG, Espinoza R, Fuenzalida VM, Blanco E, Escalona N, Gracia FJ, Villarroel R, Guo L, Kang R, Mücklich F, Suarez S, Zhang Z. Multi-layer Ti3C2Tx-nanoparticles (MXenes) as solid lubricants—role of surface terminations and intercalated water. Appl Surf Sci. 2019;494:13.

    Article  CAS  Google Scholar 

  39. Ping P, Wang W, Chen X, Jing X. Poly(ε-caprolactone) polyurethane and its shape-memory property. Biomacromol. 2005;6:587.

    Article  Google Scholar 

  40. Zhao W, Huang Z, Liu L, Wang W, Leng J, Liu Y. Bionic design and performance research of tracheal stent based on shape memory polycaprolactone. Compos Sci Technol. 2022;229: 109671.

    Article  CAS  Google Scholar 

  41. Gao Y, Lu C, Guohui Y, Sha J, Tan J, Xuan F. Laser micro-structured pressure sensor with modulated sensitivity for electronic skins. Nanotechnology. 2019;30: 325502.

    Article  CAS  Google Scholar 

  42. Amit M, Chukoskie L, Skalsky AJ, Garudadri H, Ng TN. Flexible pressure sensors for objective assessment of motor disorders. Adv Funct Mater. 2019;30:1905241.

    Article  Google Scholar 

  43. Pena-Francesch A, Jung H, Demirel MC, Sitti M. Biosynthetic self-healing materials for soft machines. Nat Mater. 2020;19:1230.

    Article  CAS  Google Scholar 

  44. Guo H, Han Y, Zhao W, Yang J, Zhang L. Universally autonomous self-healing elastomer with high stretchability. Nat Commun. 2020;11:2037.

    Article  CAS  Google Scholar 

  45. Yu H, Feng Y, Gao L, Chen C, Zhang Z, Feng W. Self-healing high strength and thermal conductivity of 3D graphene/PDMS composites by the optimization of multiple molecular interactions. Macromolecules. 2020;53:7161.

    Article  CAS  Google Scholar 

  46. Qi D, Zhang K, Tian G, Jiang B, Huang Y. Stretchable electronics based on PDMS substrates. Adv Mater. 2023;33:2003155.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Research Foundation of Korea (NRF) grants (Number 2020M3H4A3081895, 2022R1A2C1010353 and RS-2023-00247545) funded by the Korean government (MSIP). Further support was provided by the Industry Technology R&D program (20006511), funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Woong Kim.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5685 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, S.B., Meena, J.S. & Kim, JW. Revolutionizing Thermal Stability and Self-Healing in Pressure Sensors: A Novel Approach. Adv. Fiber Mater. 5, 2028–2039 (2023). https://doi.org/10.1007/s42765-023-00321-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00321-4

Keywords

Navigation