Skip to main content
Log in

Dry Fiber-Based Electrodes for Electrophysiology Applications

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Long-term continuous health care monitoring, using wearable technologies has received considerable interest due to the significant contribution of wearables to the diagnosis of diseases and identification of health conditions. Fibers have been widely applied in human societies due to their unique advantages, including stretchability, small diameters, high dynamic bending elasticity, high length-to-width ratios, and mechanical strength. A new generation of fiber-based electrodes is being integrated into smart textiles and wearables for continuous long-term biosignal monitoring. Dry fiber-based electrodes are breathable, flexible, and durable, unlike conventional disposable gel electrodes, which are difficult to employ for long-term applications because of skin irritation and allergic responses caused by their moist and adhesive interface with the skin. In this review, we provide a concise summary of recent breakthroughs in the design, and manufacturing of dry fiber-based electrodes for electrophysiology applications, with a particular emphasis on applications in electrocardiography, electromyography, and electroencephalography. Focusing on numerous features of electroactive fiber materials, fiber processing, electrode fabrication, scaled-up manufacturing, standardization of testing and performance criteria, we discuss current limitations and provide an outlook for the future development of this field.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Reproduced with permission from Ref. [51], Copyright 2022, Springer. b Skin–electrode impedance measurement test setup on a skin dummy [53]. Reproduced with permission from Ref. [53], Copyright 2022, MDPI

Fig. 5

Reproduced with permission from Ref. [88], Copyright 2022, Elsevier. b Belt with Textrodes [97]. Reproduced with permission from Ref. [97], Copyright 2022, Elsevier. c Baby suit prototype with integrated Textrodes [97]. Reproduced with permission from Ref. [97], Copyright 2022, Elsevier. d Yarn A contains twined filaments of 100% stainless steel. Electrode A is plain knitted (top). Yarn B contains 20% stainless steel and 80% polyester staple fibers. The gray staples are the SS fibers. Wave knitted electrode B with a corrugated structure (middle). Yarn C consists of a core of polyester and a single twined silver-plated copper wire. Woven fabric of electrode C (bottom) [38]. Reproduced with permission from Ref. [38], Copyright 2022, Springer. e Flat textile electrode made of silver yarn (top) and its microscopic image. Raised 3D textile electrode made of silver yarn (bottom) [47]. Reproduced with permission from Ref. [47], Copyright 2022, BioMed Central. f Prototype of the wetting pad (above) and the ECG belt with embroidered Ag/Ti electrodes (below) [24]. Reproduced with permission from Ref. [24], Copyright 2022, MDPI

Fig. 6

Reproduced with permission from Ref. [71], Copyright 2022, MDPI. b Prototype of a knit band sensor, illustrating the outer side (left) and inner side (right) views [41]. Reproduced with permission from Ref. [41], Copyright 2022, IEEE. c Illustration of a fabric-based EEG headband [89]. Reproduced with permission from Ref. [89], Copyright 2022, IEEE. d Schematic of an earpiece for EEG monitoring (left) and the proposed in-ear EEG sensor on a viscoelastic substrate (right) [93]. Reproduced with permission from Ref. [93], Copyright 2022, IEEE

Fig. 7

Reproduced with permission from Ref. [47], Copyright 2022, BioMed Central. b Dry textile electrode made of conductive thermoplastic elastomer and its microscopic image [25]. Reproduced with permission from Ref. [25], Copyright 2022, Wiley. c Textile EMG sleeve inner view [26]. Reproduced with permission from Ref. [26], Copyright 2022, MDPI. d Optical microscopic images of the EMG sleeve representing seamless integration of the electrode structure within surrounding nylon fabric, 40 × magnification (top), 250 × magnification (bottom) [26]. Reproduced with permission from Ref. [26], Copyright 2022, MDPI. e CNT thread and an athletic shirt with CNTT electrodes connected to a wireless heart rate monitor device through CNTT transmission wires [22]. Reproduced with permission from Ref. [22], Copyright 2022, American Chemical Society

Fig. 8

Reproduced with permission from Ref [74], Copyright 2022, PLOS. b Structure of electrodes made of PEDOT-PSS glycerol silk thread. A A string-shaped electrode for ECG and B a flat electrode for EEG monitoring [74]. Reproduced with permission from Ref. [74], Copyright 2022, PLOS

Fig. 9

Reproduced with permission from Ref. [137], Copyright 2022, MDPI. b “Chest-belt type” of tightly fitted sleeveless shirts [60]. Reproduced with permission from Ref. [60], Copyright 2022, Springer. c Test rig design of two chambers, one for heating and one for cooling for assessing breathability testing of textiles [138]. Reproduced with permission from Ref. [138], Copyright 2022, Symbiosis

Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Seyedin S, Carey T, Arbab A, Eskandarian L, Bohm S, Kim JM, Torrisi F. Fibre electronics: towards scaled-up manufacturing of integrated e-textile systems. Nanoscale. 2021;13:12818–47.

    Article  CAS  Google Scholar 

  2. Webster J, Nimunkar A. Medical instrumentation: application and design. 5th ed. New York: Wiley; 2020.

    Google Scholar 

  3. Serhani MA, El Kassabi HT, Ismail H, Navaz AN. ECG monitoring systems: review, architecture, processes, and key challenges. Sensors. 2020;20:1796.

    Article  Google Scholar 

  4. Garvey JL. ECG techniques and technologies. Emerg Med Clin N Am. 2006;24:209–25 (viii).

    Article  Google Scholar 

  5. Campanini I, Disselhorst-Klug C, Rymer WZ, Merletti R. Surface EMG in clinical assessment and neurorehabilitation: barriers limiting its use. Front Neurol. 2020;11:934.

    Article  Google Scholar 

  6. Mills KR. The basics of electromyography. J Neurol Neurosurg Psychiatry. 2005;76(Suppl 2):ii32–5.

    Google Scholar 

  7. Roche AD, Rehbaum H, Farina D, Aszmann OC. Prosthetic myoelectric control strategies: a clinical perspective. Curr Surg Rep. 2014;2:44.

    Article  Google Scholar 

  8. Rodríguez-Tapia B, Soto I, Martínez D, Arballo N. Myoelectric interfaces and related applications: current state of EMG signal processing—a systematic review. IEEE Access. 2020;8:7792–805.

    Article  Google Scholar 

  9. Fountain NB, Freeman JM. EEG is an essential clinical tool: pro and con. Epilepsia. 2006;47(Suppl 1):23–5.

    Article  Google Scholar 

  10. Rundo JV, Downey R. Polysomnography. In: Levin KH, Chauvel P, editors. Handbook of clinical neurology. Cleveland: Elsevier; 2019. p. 381–92.

    Google Scholar 

  11. Pani D, Achilli A, Bonfiglio A. Survey on textile electrode technologies for electrocardiographic (ECG) monitoring, from metal wires to polymers. Adv Mater Technol. 2018;3:1800008.

    Article  Google Scholar 

  12. Pani D, Dessi A, Saenz-Cogollo JF, Barabino G, Fraboni B, Bonfiglio A. Fully textile, PEDOT:PSS based electrodes for wearable ECG monitoring systems. IEEE Trans Biomed Eng. 2016;63:540–9.

    Article  Google Scholar 

  13. Johns Hopkins Medicine. Holter monitor. 2022. https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/holter-monitor. Accessed 29 Jun 2022.

  14. Yao S, Zhu Y. Nanomaterial-enabled dry electrodes for electrophysiological sensing: a review. JOM. 2016;68:1145–55.

    Article  Google Scholar 

  15. Searle A, Kirkup L. A direct comparison of wet, dry and insulating bioelectric recording electrodes. Physiol Meas. 2000;21:271–83.

    Article  CAS  Google Scholar 

  16. Xu PJ, Zhang H, Tao XM. Textile-structured electrodes for electrocardiogram. Text Prog. 2008;40:183–213.

    Article  Google Scholar 

  17. Huang CY, Chiu CW. Facile fabrication of a stretchable and flexible nanofiber carbon film-sensing electrode by electrospinning and its application in smart clothing for ECG and EMG monitoring. ACS Appl Electron Mater. 2021;3:676–86.

    Article  CAS  Google Scholar 

  18. Fu Y, Zhao J, Dong Y, Wang X. Dry electrodes for human bioelectrical signal monitoring. Sensors (Basel). 2020;20:3651.

    Article  Google Scholar 

  19. Liu L, Xu W, Ding Y, Agarwal S, Greiner A, Duan G. A review of smart electrospun fibers toward textiles. Compos Commun. 2020;22: 100506.

    Article  Google Scholar 

  20. Li Q, Ding C, Yuan W, Xie R, Zhou X, Zhao Y, Yu M, Yang Z, Sun J, Tian Q, Han F, Li H, Deng X, Li G, Liu Z. Highly stretchable and permeable conductors based on shrinkable electrospun fiber mats. Adv Fiber Mater. 2021;3:302–11.

    Article  CAS  Google Scholar 

  21. Ryan JD, Mengistie DA, Gabrielsson R, Lund A, Müller C. Machine-washable PEDOT:PSS dyed silk yarns for electronic textiles. ACS Appl Mater Interfaces. 2017;9:9045–50.

    Article  CAS  Google Scholar 

  22. Taylor LW, Williams SM, Yan JS, Dewey OS, Vitale F, Pasquali M. Washable, sewable, all-carbon electrodes and signal wires for electronic clothing. Nano Lett. 2021;21:7093–9.

    Article  CAS  Google Scholar 

  23. Lekawa-Raus A, Patmore J, Kurzepa L, Bulmer J, Koziol K. Electrical properties of carbon nanotube based fibers and their future use in electrical wiring. Adv Funct Mater. 2014;24:3661–82.

    Article  CAS  Google Scholar 

  24. Weder M, Hegemann D, Amberg M, Hess M, Boesel LF, Abächerli R, Meyer VR, Rossi RM. Embroidered electrode with silver/titanium coating for long-term ECG monitoring. Sensors (Basel). 2015;15:1750–9.

    Article  CAS  Google Scholar 

  25. Eskandarian L, Toossi A, Nassif F, Rostami SG, Ni S, Mahnam A, Meghrazi MA, Takarada W, Kikutani T, Naguib HE. 3D-knit dry electrodes using conductive elastomeric fibers for long-term continuous electrophysiological monitoring. Adv Mater Technol. 2022;7:2101572.

    Article  CAS  Google Scholar 

  26. Alizadeh-Meghrazi M, Sidhu G, Jain S, Stone M, Eskandarian L, Toossi A, Popovic MR. A mass-producible washable smart garment with embedded textile EMG electrodes for control of myoelectric prostheses: a pilot study. Sensors (Basel). 2022;22:666.

    Article  CAS  Google Scholar 

  27. Arquilla K, Devendorf L, Webb AK, Anderson AP. Detection of the complete ECG waveform with woven textile electrodes. Biosensors (Basel). 2021;11:331.

    Article  Google Scholar 

  28. Arquilla K, Webb A, Anderson A. Woven electrocardiogram (ECG) electrodes for health monitoring in operational environments. In: 42nd Annual International Conference of the IEEE engineering in medicine & biology society (EMBC). Montreal, QC: IEEE; 2020, pp. 4498–4501.

  29. Arquilla K, Webb AK, Anderson AP. Textile electrocardiogram (ECG) electrodes for wearable health monitoring. Sensors (Basel). 2020;20:1013.

    Article  CAS  Google Scholar 

  30. Mestrovic M, Helmer R, Kyratzis L, Kumar D. Preliminary study of dry knitted fabric electrodes for physiological monitoring. In: 3rd International Conference on intelligent sensors, sensor networks and information. Melbourne, Australia: IEEE; 2007, pp. 601–606.

  31. Xiao X, Dong K, Li C, Wu G, Zhou H, Gu Y. A comfortability and signal quality study of conductive weave electrodes in long-term collection of human electrocardiographs. Text Res J. 2019;89:2098–112.

    Article  CAS  Google Scholar 

  32. Lee JW, Yun KS. ECG monitoring garment using conductive carbon paste for reduced motion artifacts. Polymers (Basel). 2017;9:439.

    Article  Google Scholar 

  33. Eskandarian L, Lam E, Rupnow C, Meghrazi MA, Naguib HE. Robust and multifunctional conductive yarns for biomedical textile computing. ACS Appl Electron Mater. 2020;2:1554–66.

    Article  CAS  Google Scholar 

  34. Logothetis I, Bayramol DV, Gil I, Dabnichki P, Pirogova E. Evaluating silver-plated nylon (Ag/PA66) e-textiles for bioelectrical impedance analysis (BIA) application. Meas Sci Technol. 2020;31: 075101.

    Article  CAS  Google Scholar 

  35. Coyle S, Lau K, Moyna N, O’Gorman D, Diamond D, Di Francesco F, Costanzo D, Salvo P, Trivella M, De Rossi D, Taccini N, Paradiso R, Porchet J, Ridolfi A, Luprano J, Chuzel C, Lanier T, Revol-Cavalier F, Schoumacker S, Mourier V, Chartier I, Convert R, De-Moncuit H, Bini C. BIOTEX—biosensing textiles for personalised healthcare management. IEEE Trans Inf Technol Biomed. 2010;14:364–70.

    Article  Google Scholar 

  36. Paradiso R, Loriga G, Taccini N. A wearable health care system based on knitted integrated sensors. IEEE Trans Inf Technol Biomed. 2005;9:337–44.

    Article  Google Scholar 

  37. Kim H, Kim E, Choi C, Yeo WH. Advances in soft and dry electrodes for wearable health monitoring devices. Micromachines (Basel). 2022;13:629.

    Article  Google Scholar 

  38. Rattfält L, Lindén M, Hult P, Berglin L, Ask P. Electrical characteristics of conductive yarns and textile electrodes for medical applications. Med Biol Eng Comput. 2007;45:1251–7.

    Article  Google Scholar 

  39. Taji B, Shirmohammadi S, Groza V, Batkin I. Impact of skin–electrode interface on electrocardiogram measurements using conductive textile electrodes. IEEE Trans Instrum Meas. 2014;63:1412–22.

    Article  Google Scholar 

  40. Cömert A, Hyttinen J. Impedance spectroscopy of changes in skin-electrode impedance induced by motion. Biomed Eng Online. 2014;13:149.

    Article  Google Scholar 

  41. Lee S, Kim M, Kang T, Park J, Choi Y. Knit band sensor for myoelectric control of surface EMG-based prosthetic hand. IEEE Sens J. 2018;18:8578–86.

    Article  CAS  Google Scholar 

  42. An X, Tangsirinaruenart O, Stylios GK. Investigating the performance of dry textile electrodes for wearable end-uses. J Text Inst. 2019;110:151–8.

    Article  Google Scholar 

  43. Logothetis I, Fernandez-Garcia R, Troynikov O, Dabnichki P, Pirogova E, Gil I. Embroidered electrodes for bioelectrical impedance analysis: impact of surface area and stitch parameters. Meas Sci Technol. 2019;30: 115103.

    Article  CAS  Google Scholar 

  44. Soroudi A, Hernández N, Wipenmyr J, Nierstrasz V. Surface modification of textile electrodes to improve electrocardiography signals in wearable smart garment. J Mater Sci Mater Electron. 2019;30:16666–75.

    Article  CAS  Google Scholar 

  45. Cobarrubias E. Design and test strategies for biopotential sensors in smart garments. Master thesis. Raleigh, NC: North Carolina State University; 2020.

  46. Goyal K, Borkholder DA, Day SW. A biomimetic skin phantom for characterizing wearable electrodes in the low-frequency regime. Sens Actuators A Phys. 2022;340: 113513.

    Article  CAS  Google Scholar 

  47. Alizadeh-Meghrazi M, Ying B, Schlums A, Lam E, Eskandarian L, Abbas F, Sidhu G, Mahnam A, Moineau B, Popovic MR. Evaluation of dry textile electrodes for long-term electrocardiographic monitoring. Biomed Eng Online. 2021;20:68.

    Article  Google Scholar 

  48. Beckmann L, Neuhaus C, Medrano G, Jungbecker N, Walter M, Gries T, Leonhardt S. Characterization of textile electrodes and conductors using standardized measurement setups. Physiol Meas. 2010;31:233–47.

    Article  CAS  Google Scholar 

  49. Lam E, Alizadeh-Meghrazi M, Schlums A, Eskandarian L, Mahnam A, Moineau B, Popovic MR. Exploring textile-based electrode materials for electromyography smart garments. J Rehabil Assist Technol Eng. 2022. https://doi.org/10.1177/20556683211061995.

    Article  Google Scholar 

  50. Woelfling B, Classen E, Klepser A, Gerhardts A. Comfort rating for upholstery systems. In: 2nd International Comfort Congress. Delft, Netherlands; 2019, pp. 1–7.

  51. Casson AJ. Wearable EEG and beyond. Biomed Eng Lett. 2019;9:53–71.

    Article  Google Scholar 

  52. Priniotakis G, Westbroek P, Van Langenhove L, Hertleer C. Electrochemical impedance spectroscopy as an objective method for characterization of textile electrodes. Trans Inst Meas Control. 2007;29:271–81.

    Article  Google Scholar 

  53. An X, Stylios GK. A hybrid textile electrode for electrocardiogram (ECG) measurement and motion tracking. Materials (Basel). 2018;11:1887.

    Article  Google Scholar 

  54. Neto JP, Baião P, Lopes G, Frazão J, Nogueira J, Fortunato E, Barquinha P, Kampff AR. Does impedance matter when recording spikes with polytrodes? Front Neurosci. 2018;12:715.

    Article  Google Scholar 

  55. Tseghai G, Malengier B, Fante K, Van Langenhove L. Dry electroencephalography textrode for brain activity monitoring. IEEE Sens J. 2021;21:22077–85.

    Article  CAS  Google Scholar 

  56. Meziane N, Webster JG, Attari M, Nimunkar AJ. Dry electrodes for electrocardiography. Physiol Meas. 2013;34:R47–69.

    Article  CAS  Google Scholar 

  57. Tseghai GB, Malengier B, Fante KA, Van Langenhove L. The status of textile-based dry EEG electrodes. Autex Res J. 2021;21:63–70.

    Article  CAS  Google Scholar 

  58. Marozas V, Petrenas A, Daukantas S, Lukosevicius A. A comparison of conductive textile-based and silver/silver chloride gel electrodes in exercise electrocardiogram recordings. J Electrocardiol. 2011;44:189–94.

    Article  Google Scholar 

  59. Song HY, Lee JH, Kang D, Cho H, Cho HS, Lee JW, Lee YJ. Textile electrodes of jacquard woven fabrics for biosignal measurement. J Text Inst. 2010;101:758–70.

    Article  CAS  Google Scholar 

  60. Cho HS, Koo SM, Lee J, Cho H, Kang DH, Song HY, Lee JW, Lee KH, Lee YJ. Heart monitoring garments using textile electrodes for healthcare applications. J Med Syst. 2011;35:189–201.

    Article  Google Scholar 

  61. Nigusse A, Malengier B, Mengistie D, Van Langenhove L. Evaluation of silver-coated textile electrodes for ECG recording. In: IEEE International Conference on flexible and printable sensors and systems (FLEPS). Manchester, UK: IEEE; 2021, pp. 1–4.

  62. Meghrazi MA, Tian Y, Mahnam A, Bhattachan P, Eskandarian L, Kakhki ST, Popovic MR, Lankarany M. Multichannel ECG recording from waist using textile sensors. Biomed Eng Online. 2020;19:48.

    Article  Google Scholar 

  63. Yan JS, Orecchioni M, Vitale F, Coco JA, Duret G, Antonucci S, Pamulapati SS, Taylor LW, Dewey OS, Di Sante M, Segura AM, Gurcan C, Di Lisa F, Yilmazer A, McCauley MD, Robinson JT, Razavi M, Ley K, Delogu LG, Pasquali M. Biocompatibility studies of macroscopic fibers made from carbon nanotubes: implications for carbon nanotube macrostructures in biomedical applications. Carbon. 2021;173:462–76.

    Article  CAS  Google Scholar 

  64. Zhang X, Zhong Y. Development of woven textile electrodes with enhanced moisture-wicking properties. J Text Inst. 2021;112:983–95.

    Article  CAS  Google Scholar 

  65. Li M, Xiong W, Li Y. Wearable measurement of ECG signals based on smart clothing. Int J Telemed Appl. 2020;2020:6329360.

    Google Scholar 

  66. Lee S, Sung M, Choi Y. Wearable fabric sensor for controlling myoelectric hand prosthesis via classification of foot postures. Smart Mater Struct. 2020;29: 035004.

    Article  CAS  Google Scholar 

  67. Zaman SU, Tao X, Cochrane C, Koncar V. Understanding the washing damage to textile ECG dry skin electrodes, embroidered and fabric-based; set up of equivalent laboratory tests. Sensors (Basel). 2020;20:1272.

    Article  CAS  Google Scholar 

  68. Gaubert V, Gidik H, Bodart N, Koncar V. Quantification of the silver content of a silver-plated nylon electrode according to the nature of the laundering detergent. IOP Conf Ser Mater Sci Eng. 2020;827: 012033.

    Article  CAS  Google Scholar 

  69. Fouassier D, Roy X, Blanchard A, Hulot JS. Assessment of signal quality measured with a smart 12-lead ECG acquisition T-shirt. Ann Noninvasive Electrocardiol. 2020;25: e12682.

    Article  Google Scholar 

  70. Tsukada YT, Tokita M, Murata H, Hirasawa Y, Yodogawa K, Iwasaki YK, Asai K, Shimizu W, Kasai N, Nakashima H, Tsukada S. Validation of wearable textile electrodes for ECG monitoring. Heart Vessels. 2019;34:1203–11.

    Article  Google Scholar 

  71. Isezaki T, Kadone H, Niijima A, Aoki R, Watanabe T, Kimura T, Suzuki K. Sock-type wearable sensor for estimating lower leg muscle activity using distal EMG signals. Sensors (Basel). 2019;19:1954.

    Article  Google Scholar 

  72. Ankhili A, Zaman S, Tao X, Cochrane C, Koncar V, Coulon D. How to connect conductive flexible textile tracks to skin electrocardiography electrodes and protect them against washing. IEEE Sens J. 2019;19:11995–2002.

    Article  CAS  Google Scholar 

  73. Xiao X, Pirbhulal S, Dong K, Wu W, Mei X. Performance evaluation of plain weave and honeycomb weave electrodes for human ECG monitoring. J Sens. 2017;2017:7539840.

    Article  Google Scholar 

  74. Tsukada S, Nakashima H, Torimitsu K. Conductive polymer combined silk fiber bundle for bioelectrical signal recording. PLoS ONE. 2012;7: e33689.

    Article  CAS  Google Scholar 

  75. Lorussi F, Carbonaro N, De Rossi D, Paradiso R, Veltink P, Tognetti A. Wearable textile platform for assessing stroke patient treatment in daily life conditions. Front Bioeng Biotechnol. 2016;4:28.

    Article  Google Scholar 

  76. Brown S, Ortiz-Catalan M, Petersson J, Rödby K, Seoane F. Intarsia-sensorized band and textrodes for real-time myoelectric pattern recognition. In: 38th Annual International Conference of the IEEE engineering in medicine and biology society (EMBC). Orlando, FL: IEEE; 2016, pp. 6074–6077.

  77. Amberg M, Rupper P, Storchenegger R, Weder M, Hegemann D. Controlling the release from silver electrodes by titanium adlayers for health monitoring. Nanomedicine. 2015;11:845–53.

    Article  CAS  Google Scholar 

  78. Kannaian T, Neelaveni R, Thilagavathi G. Design and development of embroidered textile electrodes for continuous measurement of electrocardiogram signals. J Ind Text. 2013;42:303–18.

    Article  Google Scholar 

  79. Cho G, Jeong K, Paik M, Kwun Y, Sung M. Performance evaluation of textile-based electrodes and motion sensors for smart clothing. IEEE Sens J. 2011;11:3183–93.

    Article  Google Scholar 

  80. Jourand P, De Clercq H, Puers R. Robust monitoring of vital signs integrated in textile. Sens Actuators A Phys. 2010;161:288–96.

    Article  CAS  Google Scholar 

  81. Jourand P, De Clercq H, Corthout R, Puers R. Textile integrated breathing and ECG monitoring system. Proc Chem. 2009;1:722–5.

    Article  Google Scholar 

  82. Bouwstra S, Chen W, Feijs L, Oetomo S. Smart jacket design for neonatal monitoring with wearable sensors. In: Sixth International Workshop on wearable and implantable body sensor networks. Berkeley, CA: IEEE; 2009, pp. 162–167.

  83. Zheng JW, Zhang ZB, Wu TH, Zhang Y. A wearable mobihealth care system supporting real-time diagnosis and alarm. Med Biol Eng Comput. 2007;45:877–85.

    Article  CAS  Google Scholar 

  84. Shen C, Kao T, Huang C, Lee J. Wearable band using a fabric-based sensor for exercise ECG monitoring. In: 10th IEEE International Symposium on wearable computers. Montreux, Switzerland: IEEE; 2006, pp. 143–144.

  85. Lobodzinski SM, Laks MM. Biopotential fiber sensor. J Electrocardiol. 2006;39:S41–6.

    Article  Google Scholar 

  86. Scilingo EP, Gemignani A, Paradiso R, Taccini N, Ghelarducci B, De Rossi D. Performance evaluation of sensing fabrics for monitoring physiological and biomechanical variables. IEEE Trans Inf Technol Biomed. 2005;9:345–52.

    Article  Google Scholar 

  87. Pacelli M, Loriga G, Taccini N, Paradiso R. Sensing fabrics for monitoring physiological and biomechanical variables: e-textile solutions. In: 3rd IEEE/EMBS International Summer School on medical devices and biosensors. Cambridge, MA: IEEE; 2006, pp. 1–4.

  88. Catrysse M, Puers R, Hertleer C, Van Langenhove L, Van Egmond H, Matthys D. Towards the integration of textile sensors in a wireless monitoring suit. Sens Actuators A Phys. 2004;114:302–11.

    Article  CAS  Google Scholar 

  89. Fleury A, Alizadeh M, Stefan G, Chau T. Toward fabric-based EEG access technologies: seamless knit electrodes for a portable brain-computer interface. In: IEEE life sciences conference (LSC). Sydney, Australia: IEEE; 2017, pp. 35–38.

  90. Pitou S, Wu F, Shafti A, Michael B, Stopforth R, Howard M. Embroidered electrodes for control of affordable myoelectric prostheses. In: IEEE International Conference on robotics and automation (ICRA). Brisbane, Australia: IEEE; 2018, pp. 1812–1817.

  91. Löfhede J, Seoane F, Thordstein M. Soft textile electrodes for EEG monitoring. In: Proceedings of the 10th IEEE International Conference on information technology and applications in biomedicine. Corfu, Greece: IEEE; 2010, pp. 1–4.

  92. Silva M, Catarino A, Carvalho H, Rocha A, Monteiro J, Montagna G. Study of vital sign monitoring with textile sensors in swimming pool environment. In: 35th annual Conference of IEEE industrial electronics. Porto, Portugal: IEEE; 2009, pp. 4426–4431.

  93. Goverdovsky V, Looney D, Kidmose P, Mandic D. In-ear EEG from viscoelastic generic earpieces: robust and unobtrusive 24/7 monitoring. IEEE Sens J. 2016;16:271–7.

    Article  CAS  Google Scholar 

  94. Finni T, Hu M, Kettunen P, Vilavuo T, Cheng S. Measurement of EMG activity with textile electrodes embedded into clothing. Physiol Meas. 2007;28:1405–19.

    Article  CAS  Google Scholar 

  95. Tikkanen O, Hu M, Vilavuo T, Tolvanen P, Cheng S, Finni T. Ventilatory threshold during incremental running can be estimated using EMG shorts. Physiol Meas. 2012;33:603–14.

    Article  Google Scholar 

  96. Colyer SL, McGuigan PM. Textile electrodes embedded in clothing: a practical alternative to traditional surface electromyography when assessing muscle excitation during functional movements. J Sports Sci Med. 2018;17:101–9.

    Google Scholar 

  97. Coosemans J, Hermans B, Puers R. Integrating wireless ECG monitoring in textiles. In: The 13th international conference on solid-state sensors, actuators and microsystems, 2005. Digest of technical papers. TRANSDUCERS '05. Seoul, South Korea: IEEE; 2005, pp. 228–232.

  98. Mattila H. Intelligent textiles and clothing. Boca Raton, FL: CRC Press; 2006.

    Book  Google Scholar 

  99. Honarvar MG, Latifi M. Overview of wearable electronics and smart textiles. J Text Inst. 2017;108:631–52.

    Article  Google Scholar 

  100. Memon SF, Memon M, Bhatti S. Wearable technology for infant health monitoring: a survey. IET Circuits Devices Syst. 2020;14:115–29.

    Article  Google Scholar 

  101. Moreira IP, Sanivada UK, Bessa J, Cunha F, Fangueiro R. A review of multiple scale fibrous and composite systems for heating applications. Molecules. 2021;26:3686.

    Article  CAS  Google Scholar 

  102. Nigusse AB, Mengistie DA, Malengier B, Tseghai GB, Langenhove LV. Wearable smart textiles for long-term electrocardiography monitoring-a review. Sensors (Basel). 2021;21:4174.

    Article  CAS  Google Scholar 

  103. Paiva A, Carvalho H, Catarino A, Postolache O, Postolache G. Development of dry textile electrodes for electromiography a comparison between knitted structures and conductive yarns. In: 9th International Conference on sensing technology (ICST), vol 130. Auckland, New Zealand: IEEE; 2015, pp. 447–451.

  104. Joutsen AS, Kaappa ES, Karinsalo TJ, Vanhala J. Dry electrode sizes in recording ECG and heart rate in wearable applications. In: IFMBE Proceedings, vol 65. Springer Verlag; 2018. pp 735–738.

  105. Wu H, Yang G, Zhu K, Liu S, Guo W, Jiang Z, Li Z. Materials, devices, and systems of on-skin electrodes for electrophysiological monitoring and human-machine interfaces. Adv Sci (Weinh). 2021;8:2001938.

    Article  CAS  Google Scholar 

  106. Ismar E, Zaman SU, Tao X, Cochrane C, Koncar V. Effect of water and chemical stresses on the silver coated polyamide yarns. Fibers Polym. 2019;20:2604–10.

    Article  CAS  Google Scholar 

  107. Löfhede J, Seoane F, Thordstein M. Textile electrodes for EEG recording–a pilot study. Sensors (Basel). 2012;12:16907–19.

    Article  Google Scholar 

  108. Onggar T, Kruppke I, Cherif C. Techniques and processes for the realization of electrically conducting textile materials from intrinsically conducting polymers and their application potential. Polymers (Basel). 2020;12:2867.

    Article  CAS  Google Scholar 

  109. Ankhili A, Tao X, Cochrane C, Koncar V, Coulon D, Tarlet JM. Ambulatory evaluation of ECG signals obtained using washable textile-based electrodes made with chemically modified PEDOT:PSS. Sensors (Basel). 2019;19:416.

    Article  Google Scholar 

  110. Ankhili A, Tao X, Cochrane C, Coulon D, Koncar V. Washable and reliable textile electrodes embedded into underwear fabric for electrocardiography (ECG) monitoring. Materials (Basel). 2018;11:256.

    Article  Google Scholar 

  111. Castrillón R, Pérez JJ, Andrade-Caicedo H. Electrical performance of PEDOT:PSS-based textile electrodes for wearable ECG monitoring: a comparative study. Biomed Eng Online. 2018;17:38.

    Article  Google Scholar 

  112. Del Agua I, Mantione D, Ismailov U, Sanchez-Sanchez A, Aramburu N, Malliaras GG, Mecerreyes D, Ismailova E. DVS-crosslinked PEDOT:PSS free-standing and textile electrodes toward wearable health monitoring. Adv Mater Technol. 2018;3:1700322.

    Article  Google Scholar 

  113. Ankhili A, Tao X, Cochrane C, Koncar V, Coulon D, Tarlet JM. Comparative study on conductive knitted fabric electrodes for long-term electrocardiography monitoring: silver-plated and PEDOT:PSS coated fabrics. Sensors (Basel). 2018;18:3890.

    Article  Google Scholar 

  114. Takamatsu S, Lonjaret T, Crisp D, Badier JM, Malliaras GG, Ismailova E. Direct patterning of organic conductors on knitted textiles for long-term electrocardiography. Sci Rep. 2015;5:15003.

    Article  CAS  Google Scholar 

  115. Trindade IG, Martins F, Baptista P. High electrical conductance poly(3,4-ethylenedioxythiophene) coatings on textile for electrocardiogram monitoring. Synth Met. 2015;210:179–85.

    Article  CAS  Google Scholar 

  116. Watanabe S, Takahashi H, Torimitsu K. Electroconductive polymer-coated silk fiber electrodes for neural recording and stimulation in vivo. Jpn J Appl Phys. 2017;56: 037001.

    Article  Google Scholar 

  117. ANSI Webstore. ANSI/AAMI EC12:2000/(R)2005: disposable ECG electrodes. https://webstore.ansi.org/Standards/AAMI/ansiaamiec1220002005. Accessed 7 Jul 2022.

  118. Wang L, Fu X, He J, Shi X, Chen T, Chen P, Wang B, Peng H. Application challenges in fiber and textile electronics. Adv Mater. 2020;32: e1901971.

    Article  Google Scholar 

  119. Schwarz A, Van Langenhove L, Guermonprez P, Deguillemont D. A roadmap on smart textiles. Text Prog. 2010;42:99–180.

    Article  Google Scholar 

  120. ASTM. ASTM WK61480: new test method for durability of smart garment textile electrodes after laundering. 2017. https://www.astm.org/workitem-wk61480. Accessed 3 Jul 2022.

  121. AATCC. AATCC tackles laundering, various exposure conditions, and measuring e-textiles. 2020. https://www.aatcc.org/aatcc-tackles-laundering-various-exposure-conditions-and-measuring-e-textiles/. Accessed 3 Jul 2022.

  122. IEC Webstore. IEC 63203–204–1:2021. 2021. https://webstore.iec.ch/publication/62632. Accessed 3 Jul 2022.

  123. IPC. IPC-8921 - Standard only: requirements for woven and knitted electronic textiles (e-textiles) integrated with conductive fibers, conductive yarns and/or wires. 2019. https://shop.ipc.org/general-electronics/standards/8921-0-0-english. Accessed 3 Jul 2022.

  124. Du D, Tang Z, Ouyang J. Highly washable e-textile prepared by ultrasonic nanosoldering of carbon nanotubes onto polymer fibers. J Mater Chem C. 2018;6:883–9.

    Article  CAS  Google Scholar 

  125. Cho J, Moon J, Jeong K, Cho G. Application of PU-sealing into Cu/Ni electroless plated polyester fabrics for e-textiles. Fibers Polym. 2007;8:330–4.

    Article  CAS  Google Scholar 

  126. Yapici MK, Alkhidir T, Samad YA, Liao K. Graphene-clad textile electrodes for electrocardiogram monitoring. Sens Actuators B Chem. 2015;221:1469–74.

    Article  CAS  Google Scholar 

  127. Fugetsu B, Akiba E, Hachiya M, Endo M. The production of soft, durable, and electrically conductive polyester multifilament yarns by dye-printing them with carbon nanotubes. Carbon. 2009;47:527–30.

    Article  CAS  Google Scholar 

  128. Hardy DA, Rahemtulla Z, Satharasinghe A, Shahidi A, Oliveira C, Anastasopoulos I, Nashed MN, Kgatuke M, Komolafe A, Torah R, Tudor J, Hughes-Riley T, Beeby S, Dias T. Wash testing of electronic yarn. Materials (Basel). 2020;13:1228.

    Article  CAS  Google Scholar 

  129. Guo Y, Otley MT, Li M, Zhang X, Sinha SK, Treich GM, Sotzing GA. PEDOT:PSS “wires” printed on textile for wearable electronics. ACS Appl Mater Interfaces. 2016;8:26998–7005.

    Article  CAS  Google Scholar 

  130. Jin H, Matsuhisa N, Lee S, Abbas M, Yokota T, Someya T. Enhancing the performance of stretchable conductors for e-textiles by controlled ink permeation. Adv Mater. 2017;29:1605848.

    Article  Google Scholar 

  131. Vervust T, Buyle G, Bossuyt F, Vanfleteren J. Integration of stretchable and washable electronic modules for smart textile applications. J Text Inst. 2012;103:1127–38.

    Article  CAS  Google Scholar 

  132. Atakan R, Tufan HA, Zaman SU, Cochrane C, Bahadir SK, Koncar V, Kalaoglu F. Protocol to assess the quality of transmission lines within smart textile structures. Measurement. 2020;152: 107194.

    Article  Google Scholar 

  133. Zaman SU, Tao X, Cochrane C, Koncar V. Market readiness of smart textile structures—reliability and washability. IOP Conf Ser Mater Sci Eng. 2018;459: 012071.

    Article  Google Scholar 

  134. Zaman SU, Tao X, Cochrane C, Koncar V. Development of e-textile electrodes: washability and mechanical stresses. IOP Conf Ser Mater Sci Eng. 2020;827: 012025.

    Article  CAS  Google Scholar 

  135. Wang IJ, Chang WT, Wu WH, Lin BS. Applying noncontact sensing technology in the customized product design of smart clothes based on anthropometry. Sensors (Basel). 2021;21:7978.

    Article  CAS  Google Scholar 

  136. Zhang X, Yeung KW, Li Y. Numerical simulation of 3D dynamic garment pressure. Text Res J. 2002;72:245–52.

    Article  CAS  Google Scholar 

  137. Acar G, Ozturk O, Golparvar AJ, Elboshra TA, Böhringer K, Kaya YM. Wearable and flexible textile electrodes for biopotential signal monitoring: a review. Electronics (Switzerland). 2019;8:479.

    CAS  Google Scholar 

  138. Mbise E, Dias T, Hurley W, Morris R. Development of a test method for investigating moisture transfer rate of textiles. J Text Eng Fash Technol. 2018;4:254–61.

    Google Scholar 

  139. Schwope AD, Wise DL, Sell KW, Dressler DP, Skornick WA. Evaluation of wound-covering materials. J Biomed Mater Res. 1977;11:489–502.

    Article  CAS  Google Scholar 

  140. Nelson Labs. Cytotoxicity. https://www.nelsonlabs.com/testing/cytotoxicity/. Accessed 5 Jul 2022.

  141. Nelson Labs. Sensitization or hypersensitivity testing. https://www.nelsonlabs.com/testing/sensitization/. Accessed 5 Jul 2022.

  142. Nelson Labs. Irritation testing: skin, eye, bladder. https://www.nelsonlabs.com/testing/irritation/. Accessed 5 Jul 2022.

  143. Jalili R, Razal JM, Innis PC, Wallace GG. One-step wet-spinning process of poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) fibers and the origin of higher electrical conductivity. Adv Funct Mater. 2011;21:3363–70.

    Article  CAS  Google Scholar 

  144. Focke WW, Wnek GE, Wei Y. Influence of oxidation state, pH, and counterion on the conductivity of polyaniline. J Phys Chem. 1987;91:5813–8.

    Article  CAS  Google Scholar 

  145. Hansen SF, Lennquist A. Carbon nanotubes added to the SIN list as a nanomaterial of very high concern. Nat Nanotechnol. 2020;15:3–4.

    Article  CAS  Google Scholar 

  146. Takaya M, Ono-Ogasawara M, Shinohara Y, Kubota H, Tsuruoka S, Koda S. Evaluation of exposure risk in the weaving process of MWCNT-coated yarn with real-time particle concentration measurements and characterization of dust particles. Ind Health. 2012;50:147–55.

    Article  CAS  Google Scholar 

  147. Zeng W, Shu L, Li Q, Chen S, Wang F, Tao XM. Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater. 2014;26:5310–36.

    Article  CAS  Google Scholar 

  148. AiQ Smart Clothing. BioMan+. https://www.aiqsmartclothing.com/product-service/bioman-plus/#tab-id-1. Accessed 5 Jul 2022.

  149. Dow H, Huang I, Rieger R, Kuo K, Guo L, Pao S. A bio-sensing system-on-chip and software for smart clothes. In: 2019 IEEE International Conference on consumer electronics (ICCE). Las Vegas, NV: IEEE; 2019; pp. 1–4

  150. Muhammad Sayem AS, Teay SH, Shahariar H, Fink PL, Albarbar A. Review on smart electro-clothing systems (SeCSs). Sensors (Basel). 2020;20:587.

    Article  Google Scholar 

  151. ICH GCP. Klinisk prövning på Arytmi: master caution garment, EKG gelelektroder - kliniska prövningsregister. https://ichgcp.net/sv/clinical-trials-registry/NCT01913561. Accessed 5 Jul 2022.

  152. Prieto-Avalos G, Cruz-Ramos NA, Alor-Hernández G, Sánchez-Cervantes JL, Rodríguez-Mazahua L, Guarneros-Nolasco LR. Wearable devices for physical monitoring of heart: a review. Biosensors (Basel). 2022;12:292.

    Article  CAS  Google Scholar 

  153. Katzburg S, Dor-Haim H, Weiss AT, Leibowitz D. Detection of unexpected ischaemia due to left main disease during tele-rehabilitation using 12-lead electrocardiogram monitoring: a case report. Eur Heart J Case Rep. 2019;3:ytz073.

    Article  Google Scholar 

  154. HealthWatch. Health sensors and wearables. https://healthwatchtech.com/. Accessed 4 Aug 2022.

  155. Myontec Inc. Mbody 3 kit legs. https://www.myontec-usa.com/product-page/copy-of-mbody-3-kit-legs. Accessed 25 Aug 2022.

  156. Neurable. The science behind neurable. https://neurable.com/science. Accessed 4 Aug 2022.

  157. Myant Health. https://myanthealth.com/. Accessed 4 Aug 2022.

  158. Myant. Powered by Skiin. https://myant.ca/powered-by-skiin/. Accessed 4 Aug 2022.

  159. Sismondo C. Toronto test subjects try out smart underpants to monitor cardiovascular health. The Star. 2021. https://www.thestar.com/life/health_wellness/2021/10/18/toronto-test-subjects-try-out-smart-underpants-to-monitor-cardiovascular-health.html. Accessed 4 Aug 2022.

  160. MedigyTM. Cardioskin™. https://www.medigy.com/offering/cardioskin/. Accessed 5 Jul 2022.

  161. Vardas P, Cowie M, Dagres N, Asvestas D, Tzeis S, Vardas EP, Hindricks G, Camm J. The electrocardiogram endeavour: from the Holter single-lead recordings to multilead wearable devices supported by computational machine learning algorithms. Europace. 2020;22:19–23.

    Article  Google Scholar 

  162. Myontec. Wearable technology. https://www.myontec.com/. Accessed 5 Jul 2022.

  163. Neurable. The science behind neurable. https://neurable.com/science. Accessed 5 Jul 2022.

  164. Alcaide R, Agarwal N, Candassamy J, Cavanagh S, Lim M, Meschede-Krasa B, McIntyre J, Ruiz-Blondet MV, Siebert B, Stanley D. EEG-based focus estimation using neurable’s enten headphones and analytics platform. bioRxiv. 2021. https://doi.org/10.1101/2021.06.21.448991.

    Article  Google Scholar 

  165. Myant Health. Garment selection guide. https://myanthealth.com/pages/garment-selection-guide-1. Accessed 5 Jul 2022.

  166. Fukuma N, Hasumi E, Fujiu K, Waki K, Toyooka T, Komuro I, Ohe K. Feasibility of a T-shirt-type wearable electrocardiography monitor for detection of covert atrial fibrillation in young healthy adults. Sci Rep. 2019;9:11768.

    Article  Google Scholar 

  167. Ousaka D, Hirai K, Sakano N, Morita M, Haruna M, Hirano K, Yamane T, Teraoka A, Sanou K, Oozawa S, Kasahara S. Initial evaluation of a novel electrocardiography sensor-embedded fabric wear during a full marathon. Heart Vessels. 2022;37:443–50.

    Article  Google Scholar 

  168. Sarabia-Riquelme R, Andrews R, Anthony JE, Weisenberger MC. Highly conductive wet-spun PEDOT:PSS fibers for applications in electronic textiles. J Mater Chem C. 2020;8:11618–30.

    Article  CAS  Google Scholar 

  169. Wen N, Fan Z, Yang S, Zhao Y, Cong T, Xu S, Zhang H, Wang J, Huang H, Li C, Pan L. Highly conductive, ultra-flexible and continuously processable PEDOT:PSS fibers with high thermoelectric properties for wearable energy harvesting. Nano Energy. 2020;78: 105361.

    Article  CAS  Google Scholar 

  170. He H, Ouyang J. Enhancements in the mechanical stretchability and thermoelectric properties of PEDOT:PSS for flexible electronics applications. Acc Mater Res. 2020;1:146–57.

    Article  CAS  Google Scholar 

  171. Gao Q, Wang M, Kang X, Zhu C, Ge M. Continuous wet-spinning of flexible and water-stable conductive PEDOT: PSS/PVA composite fibers for wearable sensors. Compos Commun. 2020;17:134–40.

    Article  Google Scholar 

  172. Gao C, He S, Qiu L, Wang M, Gao J, Gao Q. Continuous dry–wet spinning of white, stretchable, and conductive fibers of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and ATO@TiO2 nanoparticles for wearable e-textiles. J Mater Chem C. 2020;8:8362–7.

    Article  CAS  Google Scholar 

  173. Gao Q, Wang Y, Wang P, Shen M, Li T, Gao C, Zhu J. Highly stretchable, conductive and long-term stable PEDOT:PSS fibers with surface arrays for wearable sensors. Adv Eng Mater. 2022;24:2101448.

    Article  CAS  Google Scholar 

  174. Yang T, Wang X, Yang Q, Yang X, Li Q. Bioinspired temperature-sensitive yarn with highly stretchable capability for healthcare applications. Adv Mater Technol. 2021;6:2001075.

    Article  Google Scholar 

  175. Wang Y, Wang M, Wang P, Zhou W, Chen Z, Gao Q, Shen M, Zhu J. Urea-treated wet-spun PEDOT: PSS fibers for achieving high-performance wearable supercapacitors. Compos Commun. 2021;27: 100885.

    Article  Google Scholar 

  176. Wang P, Wang M, Zhu J, Wang Y, Gao J, Gao C, Gao Q. Surface engineering via self-assembly on PEDOT: PSS fibers: biomimetic fluff-like morphology and sensing application. Chem Eng J. 2021;425: 131551.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr. Siting Ni, Dr. Milad Alizadeh Meghrazi, Dr. Amin Mahnam, and Dr. Bastien Moineau for their contribution and support in framing the rough initial draft of the research. The authors are thankful to Michelle Zheng and Danielle West for graphic design and illustrations. The authors would like to express their appreciation to Prof. Takeshi Kikutani for his valuable time and efforts spent reviewing this manuscript and providing critical feedback.

Funding

The authors would like to acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC) for the financial support they have provided for this research work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by LE, EP and AT. The first draft of the manuscript was written by LE and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hani E. Naguib.

Ethics declarations

Conflict of Interest

There are no competing financial interests in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eskandarian, L., Pajootan, E., Toossi, A. et al. Dry Fiber-Based Electrodes for Electrophysiology Applications. Adv. Fiber Mater. 5, 819–846 (2023). https://doi.org/10.1007/s42765-023-00263-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00263-x

Keywords

Navigation