Skip to main content
Log in

Rock Climbing-Inspired Electrohydrodynamic Cryoprinting of Micropatterned Porous Fiber Scaffolds with Improved MSC Therapy for Wound Healing

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Impaired wound healing imposes great health risks to patients. Recently, mesenchymal stem cell (MSC) therapy has shown potential to improve the healing process, but approaches to employ MSCs in the treatment of wounds remain elusive. In this study, we reported a novel electrohydrodynamic (EHD) cyroprinting method to fabricate micropatterned fiber scaffolds with polycaprolactone (PCL) dissolved in glacial acetic acid (GAC). Cyroprinting ensured the formation of a porous structure of PCL fibers by preventing the evaporation of GAC, thus increasing the surface roughness parameter Ra from 11 to 130 nm. Similar to how rough rocks facilitate easy climbing, the rough surface of fibers was able to increase the adhesion of adipose-derived MSCs (AMSCs) by providing more binding sites; therefore, the cell paracrine action of secreting growth factors and chemokines was enhanced, promoting fibroblast migration and vascular endothelial cell tube formation. In rat models with one-centimeter wound defects, enhanced MSC therapy based on porous PCL fiber scaffolds improved wound healing by augmenting scarless collagen deposition and angiogenesis and reducing proinflammatory reactions. Altogether, this study offers a new and feasible strategy to modulate the surface topography of polymeric scaffolds to strengthen MSC therapy for wound healing.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data and materials availability

All of the data needed to evaluate the conclusions in the paper are presented in the paper and/or the Supplementary Materials.

References

  1. Maschalidi S, Mehrotra P, Keceli BN, De Cleene H, Lecomte K, Van der Cruyssen R, Janssen P, Pinney J, van Loo G, Elewaut D, Massie A, Hoste E, Ravichandran KS. Targeting SLC7A11 improves efferocytosis by dendritic cells and wound healing in diabetes. Nature 2022;606:776–84.

    Article  CAS  Google Scholar 

  2. Huang J, Ren J, Chen G, Li Z, Liu Y, Wang G, Wu X. Tunable sequential drug delivery system based on chitosan/hyaluronic acid hydrogels and PLGA microspheres for management of non-healing infected wounds. Mater Sci Eng C Mater Biol Appl 2018;89:213–22.

    Article  CAS  Google Scholar 

  3. Wang Y, Beekman J, Hew J, Jackson S, Issler-Fisher AC, Parungao R, Lajevardi SS, Li Z, Maitz P. Burn injury: Challenges and advances in burn wound healing, infection, pain and scarring. Adv Drug Deliv Rev 2018;123:3–17.

    Article  CAS  Google Scholar 

  4. Leithead C, Novak Z, Spangler E, Passman MA, Witcher A, Patterson MA, Beck AW, Pearce BJ. Importance of postprocedural Wound, Ischemia, and foot Infection (WIfI) restaging in predicting limb salvage. J Vasc Surg 2018;67:498–505.

    Article  Google Scholar 

  5. Pang C, Ibrahim A, Bulstrode NW, Ferretti P. An overview of the therapeutic potential of regenerative medicine in cutaneous wound healing. Int Wound J 2017;14:450–9.

    Article  Google Scholar 

  6. Ijaola AO, Akamo DO, Damiri F, Akisin CJ, Bamidele EA, Ajiboye EG, Berrada M, Onyenokwe VO, Yang SY, Asmatulu E. Polymeric biomaterials for wound healing applications: a comprehensive review. J Biomater Sci Polym Ed 2022;33:1998–2050.

    Article  CAS  Google Scholar 

  7. Mir M, Ali MN, Barakullah A, Gulzar A, Arshad M, Fatima S, Asad M. Synthetic polymeric biomaterials for wound healing: a review. Prog Biomater 2018;7:1–21.

    Article  Google Scholar 

  8. Ding J, Zhang J, Li J, Li D, Xiao C, Xiao H, Yang H, Zhuang X, Chen X. Electrospun polymer biomaterials. Prog Polym Sci 2019;90:1–34.

    Article  CAS  Google Scholar 

  9. Feng X, Li J, Zhang X, Liu T, Ding J, Chen X. Electrospun polymer micro/nanofibers as pharmaceutical repositories for healthcare. J Control Release 2019;302:19–41.

    Article  CAS  Google Scholar 

  10. Hassanshahi A, Hassanshahi M, Khabbazi S, Hosseini-Khah Z, Peymanfar Y, Ghalamkari S, Su YW, Xian CJ. Adipose-derived stem cells for wound healing. J Cell Physiol 2019;234:7903–14.

    Article  CAS  Google Scholar 

  11. Kim YJ, Jeon HR, Kim SW, Kim YH, Im GB, Im J, Um SH, Cho SM, Lee JR, Kim HY, Joung YK, Kim DI, Bhang SH. Lightwave-reinforced stem cells with enhanced wound healing efficacy. J Tissue Eng 2021;12:1758557308.

    Article  Google Scholar 

  12. Li R, Liu K, Huang X, Li D, Ding J, Liu B, Chen X. Bioactive materials promote wound healing through modulation of cell behaviors. Adv Sci 2022;9:2105152.

    Article  CAS  Google Scholar 

  13. Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal stem cells for regenerative medicine. Cells-Basel 2019;8:886.

    Article  CAS  Google Scholar 

  14. Hu JC, Zheng CX, Sui BD, Liu WJ, Jin Y. Mesenchymal stem cell-derived exosomes: A novel and potential remedy for cutaneous wound healing and regeneration. World J Stem Cells 2022;14:318–29.

    Article  Google Scholar 

  15. Zeitouni S, Krause U, Clough BH, Halderman H, Falster A, Blalock DT, Chaput CD, Sampson HW, Gregory CA. Human mesenchymal stem cell-derived matrices for enhanced osteoregeneration. Sci Transl Med 2012;4:132r–55r.

    Article  Google Scholar 

  16. Carstens MH, Quintana FJ, Calderwood ST, Sevilla JP, Rios AB, Rivera CM, Calero DW, Zelaya ML, Garcia N, Bertram KA, Rigdon J, Dos-Anjos S, Correa D. Treatment of chronic diabetic foot ulcers with adipose-derived stromal vascular fraction cell injections: safety and evidence of efficacy at 1 year. Stem Cells Transl Med 2021;10:1138–47.

    Article  CAS  Google Scholar 

  17. Groll J, Burdick JA, Cho D, Derby B, Gelinsky M, Heilshorn SC, Jüngst T, Malda J, Mironov VA, Nakayama K, Ovsianikov A, Sun W, Takeuchi S, Yoo JJ, Woodfield TBF. A definition of bioinks and their distinction from biomaterial inks. Biofabrication 2018;11:13001.

    Article  CAS  Google Scholar 

  18. Yang A, Huang Z, Yin G, Pu X. Fabrication of aligned, porous and conductive fibers and their effects on cell adhesion and guidance. Colloids Surf B Biointerfaces 2015;134:469–74.

    Article  CAS  Google Scholar 

  19. Xie C, Gao Q, Wang P, Shao L, Yuan H, Fu J, Chen W, He Y. Structure-induced cell growth by 3D printing of heterogeneous scaffolds with ultrafine fibers. Mater Design 2019;181:108092.

    Article  CAS  Google Scholar 

  20. Gao D, Zhou JG. Designs and applications of electrohydrodynamic 3D printing. Int J Bioprint 2019;5:172.

    CAS  Google Scholar 

  21. Chang J, He J, Lei Q, Li D. Electrohydrodynamic printing of microscale PEDOT:PSS-PEO features with tunable Conductive/Thermal properties. ACS Appl Mater Interfaces 2018;10:19116–22.

    Article  CAS  Google Scholar 

  22. Taskin MB, Ahmad T, Wistlich L, Meinel L, Schmitz M, Rossi A, Groll J. Bioactive electrospun fibers: Fabrication strategies and a critical review of Surface-Sensitive characterization and quantification. Chem Rev 2021;121:11194–237.

    Article  CAS  Google Scholar 

  23. Dziadek M, Dziadek K, Checinska K, Zagrajczuk B, Golda-Cepa M, Brzychczy-Wloch M, Menaszek E, Kopec A, Cholewa-Kowalska K. PCL and PCL/bioactive glass biomaterials as carriers for biologically active polyphenolic compounds: comprehensive physicochemical and biological evaluation. Bioact Mater 2021;6:1811–26.

    Article  CAS  Google Scholar 

  24. Li Y, Zhou J, Wu C, Yu Z, Zhang W, Li W, Zhang X. Development of cryogenic electrohydrodynamic jet printing for fabrication of fine scaffolds with extra filament surface topography. 3D Print Addit Manuf. 2020;7:230–6.

    Article  Google Scholar 

  25. Ravanbakhsh H, Luo Z, Zhang X, Maharjan S, Mirkarimi HS, Tang G, Chávez-Madero C, Mongeau L, Zhang YS. Freeform cell-laden cryobioprinting for shelf-ready tissue fabrication and storage. Matter 2022;5:573–93.

    Article  CAS  Google Scholar 

  26. Li Z, Xu M, Wang J, Zhang F. Recent advances in cryogenic 3D printing technologies. Adv Eng Mater 2022; p. 2200245.

  27. Zhang Y, Ullah I, Zhang W, Ou H, Domingos M, Gloria A, Zhou J, Li W, Zhang X. Preparation of electrospun nanofibrous polycaprolactone scaffolds using nontoxic ethylene carbonate and glacial acetic acid solvent system. J Appl Polym Sci 2020;137:48387.

    Article  CAS  Google Scholar 

  28. Li W, Hu Y, Shi L, Zhang X, Xiong L, Zhang W, Ullah I. Electrospinning of polycaprolactone/pluronic F127 dissolved in glacial acetic acid: fibrous scaffolds fabrication, characterization and in vitro evaluation. J Biomater Sci Polym Ed 2018;29:1155–67.

    Article  CAS  Google Scholar 

  29. Luo CJ, Stride E, Edirisinghe M. Mapping the influence of solubility and dielectric constant on electrospinning polycaprolactone solutions. Macromolecules 2012;45:4669–80.

    Article  CAS  Google Scholar 

  30. Huang J, Liu Y, Chi X, Jiang Y, Xu Z, Qu G, Zhao Y, Li Z, Chen C, Chen G, Wu X, Ren J. Programming electronic skin with diverse skin-like properties. J Mater Chem A 2021;9:963–73.

    Article  CAS  Google Scholar 

  31. Sun Y, Chi X, Meng H, Ma M, Wang J, Feng Z, Quan Q, Liu G, Wang Y, Xie Y, Zheng Y, Peng J. Polylysine-decorated macroporous microcarriers laden with adipose-derived stem cells promote nerve regeneration in vivo. Bioactive Mater 2021;6:3987–98.

    Article  CAS  Google Scholar 

  32. Nussbaumer-Pröll AK, Eberl S, Reiter B, Stimpfl T, Jäger W, Poschner S, Zeitlinger M. Impact of thrombocytes, on bacterial growth and antimicrobial activity of selected antibiotics. Eur J Clin Microbiol 2020;39:593–7.

    Article  Google Scholar 

  33. Mayton HM, Walker SL, Berger BW. Disrupting irreversible bacterial adhesion and biofilm formation with an engineered enzyme. Appl Environ Microbiol 2021;87:e26521.

    Article  Google Scholar 

  34. Coffey BM, Anderson GG. Biofilm formation in the 96-well microtiter plate. Methods Mol Biol 2014;1149:631–41.

    Article  Google Scholar 

  35. Norzain NA, Yu ZW, Lin WC, Su HH. Micropatterned fibrous scaffold produced by using Template-Assisted electrospinning technique for wound healing application. Polymers (Basel) 2021;13:2821.

    Article  CAS  Google Scholar 

  36. Xue C, Sutrisno L, Li M, Zhu W, Fei Y, Liu C, Wang X, Cai K, Hu Y, Luo Z. Implantable multifunctional black phosphorus nanoformulation-deposited biodegradable scaffold for combinational photothermal/ chemotherapy and wound healing. Biomaterials 2021;269:120623.

    Article  CAS  Google Scholar 

  37. Huang J, Jiang Y, Liu Y, Ren Y, Xu Z, Li Z, Zhao Y, Wu X, Ren J. Marine-inspired molecular mimicry generates a drug-free, but immunogenic hydrogel adhesive protecting surgical anastomosis. Bioactive Mater 2021;6:770–82.

    Article  CAS  Google Scholar 

  38. Mohania D, Chandel S, Kumar P, Verma V, Digvijay K, Tripathi D, Choudhury K, Mitten SK, Shah D. Ultraviolet radiations: skin defense-damage mechanism. Adv Exp Med Biol 2017;996:71–87.

    Article  CAS  Google Scholar 

  39. Liu Y, Huang J, Xu Z, Li S, Jiang Y, Qu GW, Li Z, Zhao Y, Wu X, Ren J. Fabrication of gelatin-based printable inks with improved stiffness as well as antibacterial and UV-shielding properties. Int J Biol Macromol 2021;186:396–404.

    Article  CAS  Google Scholar 

  40. Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W, Xing M. 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances. Bioact Mater 2018;3:144–56.

    Article  Google Scholar 

  41. Sears NA, Seshadri DR, Dhavalikar PS, Cosgriff-Hernandez E. A review of Three-Dimensional printing in tissue engineering. Tissue Eng Part B Rev 2016;22:298–310.

    Article  CAS  Google Scholar 

  42. Laronda MM, Rutz AL, Xiao S, Whelan KA, Duncan FE, Roth EW, Woodruff TK, Shah RN. A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice. Nat Commun 2017;8:15261.

    Article  CAS  Google Scholar 

  43. Sens P. Stick-slip model for actin-driven cell protrusions, cell polarization, and crawling. Proc Natl Acad Sci U S A 2020;117:24670–8.

    Article  CAS  Google Scholar 

  44. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen 2008;16:585–601.

    Article  Google Scholar 

  45. Yen JH, Chio WT, Chuang CJ, Yang HL, Huang ST. Improved wound healing by naringin associated with MMP and the VEGF pathway. Molecules 2022;27:1695.

    Article  CAS  Google Scholar 

  46. Martin P, Nunan R. Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br J Dermatol 2015;173:370–8.

    Article  CAS  Google Scholar 

  47. Guan Y, Niu H, Liu Z, Dang Y, Shen J, Zayed M, Ma L, Guan J. Sustained oxygenation accelerates diabetic wound healing by promoting epithelialization and angiogenesis and decreasing inflammation. SCI ADV 2021;7:eabj0153.

    Article  CAS  Google Scholar 

  48. Hwang NS, Zhang C, Hwang YS, Varghese S. Mesenchymal stem cell differentiation and roles in regenerative medicine. Wiley Interdiscip Rev Syst Biol Med 2009;1:97–106.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Postdoctoral Fund of Jinling Hospital (49154), the Postdoctoral Innovation Talents Support Program (BX20220393), the Nanjing Medical Science and Technology Development Project (ZKX17017), and the National Natural Science Foundation of China (32171402) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

ZL, YQ, FZ, and JH: conceptualization; ZL, and JH: funding acquisition; JH, JW, MX, JW, JJ, FZ, and ZL: investigation; JH, and ZL: methodology and software; ZL, and YQ: supervision and validation; JHg: writing the original draft; JW, JW, and FZ: review, editing and revision.

Corresponding authors

Correspondence to Yuhao Qiang, Feng Zhang or Zongan Li.

Ethics declarations

Conflict of interest

The authors declare that they do not have any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Fiber Materials for advanced applications.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 8980 KB)

Supplementary file2 (DOCX 8980 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Wu, J., Wang, J. et al. Rock Climbing-Inspired Electrohydrodynamic Cryoprinting of Micropatterned Porous Fiber Scaffolds with Improved MSC Therapy for Wound Healing. Adv. Fiber Mater. 5, 312–326 (2023). https://doi.org/10.1007/s42765-022-00224-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00224-w

Keywords

Navigation