Skip to main content

Advertisement

Log in

Wave-Shaped Piezoelectric Nanofiber Membrane Nanogenerator for Acoustic Detection and Recognition

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

With the rapid development of internet of things and wearable electronics, how to conveniently power uncountable sensors remains a huge challenge. Energy harvesting strategy is suggested to collect and convert environmental energies into electrical energy. Thereinto, piezoelectric polymers are utilized as flexible harvesters to convert mechanical energy. The latter widely distributes in both our daily life and industrial environment. Intrinsic piezoelectric property further drives piezoelectric polymers to construct flexible self-powered strain sensors. However, relatively low piezoelectric performance restricts their application in detection and conversion of weak mechanical excitations. Herein, wave-shaped 3D piezoelectric device was fabricated by embossing electrospun polyvinylidene fluoride nanofibers. This 3D structured device presents better longitudinal and transverse piezoelectric performance than usual flat-type one. This wave-shaped piezoelectric device was developed for acoustic detection and recognition with a frequency resolution better than 0.1 Hz. This wave-shaped device was capable of frequency spectrum analyses of various sound sources from human and animals and well presents its potential for future wearable acoustic sensors and transducers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ma M, Guo L, Anderson DG, Langer R. Bio-inspired polymer composite actuator and generator driven by water gradients. Science. 2013;339:186.

    Article  CAS  Google Scholar 

  2. Wei W, Gao J, Yang J, Wei J, Guo J. A NIR light-triggered pyroelectric-dominated generator based on a liquid crystal elastomer composite actuator for photoelectric conversion and self-powered sensing. RSC Adv. 2018;8:40856.

    Article  CAS  Google Scholar 

  3. Zhou H, Zhang Y, Qiu Y, Wu H, Qin W, Liao Y, Yu Q, Cheng H. Stretchable piezoelectric energy harvesters and self-powered sensors for wearable and implantable devices. Biosens Bioelectron. 2020;168:112569.

    Article  CAS  Google Scholar 

  4. Zhou J, Fei P, Gao Y, Gu Y, Liu J, Bao G, Wang ZL. Mechanical-electrical triggers and sensors using piezoelectric micowires/nanowires. Nano Lett. 2008;8:2725.

    Article  CAS  Google Scholar 

  5. Nazemi H, Joseph A, Park J, Emadi A. Advanced micro-and nano-gas sensor technology: A review. Sensors. 2019;19:1285.

    Article  CAS  Google Scholar 

  6. Hosseini ES, Manjakkal L, Shakthivel D, Dahiya R. Glycine-chitosan-based flexible biodegradable piezoelectric pressure sensor. ACS Appl Mater Interfaces. 2020;12:9008.

    Article  CAS  Google Scholar 

  7. Nguyen DN, Moon W. Piezoelectric polymer microfiber-based composite for the flexible ultra-sensitive pressure sensor. J Appl Polym Sci. 2020;137:48884.

    Article  CAS  Google Scholar 

  8. Shi J, Wang L, Dai Z, Zhao L, Du M, Li H, Fang Y. Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range. Small. 2018;14:1800819.

    Article  Google Scholar 

  9. Yu R, Xia T, Wu B, Yuan J, Ma L, Cheng GJ, Liu F. Highly sensitive flexible piezoresistive sensor with 3D conductive network. ACS Appl Mater Interfaces. 2020;12:35291.

    Article  CAS  Google Scholar 

  10. Ma L, Shuai X, Hu Y, Liang X, Zhu P, Sun R, Wong C-P. A highly sensitive and flexible capacitive pressure sensor based on a micro-arrayed polydimethylsiloxane dielectric layer. J Mater Chem C. 2018;6:13232.

    Article  CAS  Google Scholar 

  11. Kim H, Kim G, Kim T, Lee S, Kang D, Hwang MS, Chae Y, Kang S, Lee H, Park HG. Transparent, flexible, conformal capacitive pressure sensors with nanoparticles. Small. 2018;14:1703432.

    Article  Google Scholar 

  12. Pignanelli J, Schlingman K, Carmichael TB, Rondeau-Gagné S, Ahamed MJ. A comparative analysis of capacitive-based flexible PDMS pressure sensors. Sens Actuator A Phys. 2019;285:427.

    Article  CAS  Google Scholar 

  13. Lee S, Bae SH, Lin L, Yang Y, Park C, Kim SW, Cha SN, Kim H, Park YJ, Wang ZL. Super-flexible nanogenerator for energy harvesting from gentle wind and as an active deformation sensor. Adv Funct Mater. 2013;23:2445.

    Article  CAS  Google Scholar 

  14. Lang C, Fang J, Shao H, Ding X, Lin T. High-sensitivity acoustic sensors from nanofibre webs. Nat Commun. 2016;7:1.

    Article  Google Scholar 

  15. Yang Y, Zhang H, Lin Z-H, Zhou YS, Jing Q, Su Y, Yang J, Chen J, Hu C, Wang ZL. Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. ACS Nano. 2013;7:9213.

    Article  CAS  Google Scholar 

  16. Zeng W, Tao X-M, Chen S, Shang S, Chan HLW, Choy SH. Highly durable all-fiber nanogenerator for mechanical energy harvesting. Energy Environ Sci. 2013;6:2631.

    Article  CAS  Google Scholar 

  17. Wang J, Ding W, Pan L, Wu C, Yu H, Yang L, Liao R, Wang ZL. Self-powered wind sensor system for detecting wind speed and direction based on a triboelectric nanogenerator. ACS Nano. 2018;12:3954.

    Article  CAS  Google Scholar 

  18. Wu W, Bai S, Yuan M, Qin Y, Wang ZL, Jing T. Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices. ACS Nano. 2012;6:6231.

    Article  CAS  Google Scholar 

  19. Pi Z, Zhang J, Wen C, Zhang Z-B, Wu D. Flexible piezoelectric nanogenerator made of poly (vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE) thin film. Nano Energy. 2014;7:33.

    Article  CAS  Google Scholar 

  20. Wen X, Wu W, Ding Y, Wang ZL. Piezotronic effect in flexible thin-film based devices. Adv Mater. 2013;25:3371.

    Article  CAS  Google Scholar 

  21. Wang Z, Hu J, Suryavanshi AP, Yum K, Yu M-F. Voltage generation from individual BaTiO3 nanowires under periodic tensile mechanical load. Nano Lett. 2007;7:2966.

    Article  CAS  Google Scholar 

  22. Kawai H. The piezoelectricity of poly (vinylidene fluoride). Jpn J Appl Phys. 1969;8:975.

    Article  CAS  Google Scholar 

  23. Chen X, Han X, Shen QD. PVDF-based ferroelectric polymers in modern flexible electronics. Adv Electron Mater. 2017;3:1600460.

    Article  Google Scholar 

  24. Lovinger AJ. Ferroelectric polymers. Science. 1983;220:1115.

    Article  CAS  Google Scholar 

  25. Wang J, Li H, Liu J, Duan Y, Jiang S, Yan S. On the α→β transition of carbon-coated highly oriented PVDF ultrathin film induced by melt recrystallization. J Am Chem Soc. 2003;125:1496.

    Article  CAS  Google Scholar 

  26. Pan H, Na B, Lv R, Li C, Zhu J, Yu Z. Polar phase formation in poly (vinylidene fluoride) induced by melt annealing. J Polym Sci Pol Phys. 2012;50:1433.

    Article  CAS  Google Scholar 

  27. Sencadas V, Moreira MV, Lanceros-Méndez S, Pouzada AS, Gregório Filho R. α-to β transformation on PVDF films obtained by uniaxial stretch. Mater Sci Forum. 2006;872:514–516. https://doi.org/10.4028/www.scientific.net/MSF.514-516.872

  28. Sencadas V, Gregorio R Jr, Lanceros-Méndez S. α to β phase transformation and microestructural changes of PVDF films induced by uniaxial stretch. J Macromol Sci. 2009;48:514.

    Article  CAS  Google Scholar 

  29. Davis G, McKinney J, Broadhurst M, Roth S. Electric-field-induced phase changes in poly (vinylidene fluoride). J Appl Phys. 1978;49:4998.

    Article  CAS  Google Scholar 

  30. Li M, Wondergem HJ, Spijkman M-J, Asadi K, Katsouras I, Blom PW, De Leeuw DM. Revisiting the δ-phase of poly (vinylidene fluoride) for solution-processed ferroelectric thin films. Nat Mater. 2013;12:433.

    Article  CAS  Google Scholar 

  31. Kang SJ, Park YJ, Bae I, Kim KJ, Kim HC, Bauer S, Thomas EL, Park C. Printable ferroelectric PVDF/PMMA blend films with ultralow roughness for low voltage non-volatile polymer memory. Adv Funct Mater. 2009;19:2812.

    Article  CAS  Google Scholar 

  32. Shah D, Maiti P, Gunn E, Schmidt DF, Jiang DD, Batt CA, Giannelis EP. Dramatic enhancements in toughness of polyvinylidene fluoride nanocomposites via nanoclay-directed crystal structure and morphology. Adv Mater. 2004;16:1173.

    Article  CAS  Google Scholar 

  33. Yu S, Zheng W, Yu W, Zhang Y, Jiang Q, Zhao Z. Formation mechanism of β-phase in PVDF/CNT composite prepared by the sonication method. Macromolecules. 2009;42:8870.

    Article  CAS  Google Scholar 

  34. Garain S, Jana S, Sinha TK, Mandal D. Design of in situ poled Ce3+-doped electrospun PVDF/graphene composite nanofibers for fabrication of nanopressure sensor and ultrasensitive acoustic nanogenerator. ACS Appl Mater Interfaces. 2016;8:4532.

    Article  CAS  Google Scholar 

  35. Baji A, Mai Y-W, Li Q, Liu Y. Electrospinning induced ferroelectricity in poly (vinylidene fluoride) fibers. Nanoscale. 2011;3:3068.

    Article  CAS  Google Scholar 

  36. Liu Z, Pan C, Lin L, Huang J, Ou Z. Direct-write PVDF nonwoven fiber fabric energy harvesters via the hollow cylindrical near-field electrospinning process. Smart Mater Struct. 2013;23:025003.

    Article  Google Scholar 

  37. Persano L, Dagdeviren C, Su Y, Zhang Y, Girardo S, Pisignano D, Huang Y, Rogers JA. High performance piezoelectric devices based on aligned arrays of nanofibers of poly (vinylidenefluoride-co-trifluoroethylene). Nat Commun. 2013;4:1.

    Article  Google Scholar 

  38. Ma S, Ye T, Zhang T, Wang Z, Li K, Chen M, Zhang J, Wang Z, Ramakrishna S, Wei L. Highly oriented electrospun P (VDF-TrFE) fibers via mechanical stretching for wearable motion sensing. Adv Mater Technol. 2018;3:1800033.

    Article  Google Scholar 

  39. Chang C, Tran VH, Wang J, Fuh Y-K, Lin L. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 2010;10:726.

    Article  CAS  Google Scholar 

  40. Li C, Wu P-M, Lee S, Gorton A, Schulz MJ, Ahn CH. Flexible dome and bump shape piezoelectric tactile sensors using PVDF-TrFE copolymer. J Microelectromech Syst. 2008;17:334.

    Article  CAS  Google Scholar 

  41. Fuh YK, Wang BS, Tsai C-Y. Self-powered pressure sensor with fully encapsulated 3D printed wavy substrate and highly-aligned piezoelectric fibers array. Sci Rep. 2017;7:6759.

    Article  Google Scholar 

  42. Zhao J, You Z. A shoe-embedded piezoelectric energy harvester for wearable sensors. Sensors. 2014;14:12497.

    Article  CAS  Google Scholar 

  43. You S, Shi H, Wu J, Shan L, Guo S, Dong S. A flexible, wave-shaped P (VDF-TrFE)/metglas piezoelectric composite for wearable applications. J Appl Phys. 2016;120:234103.

    Article  Google Scholar 

  44. Jung W-S, Lee M-J, Kang M-G, Moon HG, Yoon S-J, Baek S-H, Kang C-Y. Powerful curved piezoelectric generator for wearable applications. Nano Energy. 2015;13:174.

    Article  CAS  Google Scholar 

  45. Cui N, Gu L, Liu J, Bai S, Qiu J, Fu J, Kou X, Liu H, Qin Y, Wang ZL. High performance sound driven triboelectric nanogenerator for harvesting noise energy. Nano Energy. 2015;15:321.

    Article  CAS  Google Scholar 

  46. Wang Y, Zhu X, Zhang T, Bano S, Pan H, Qi L, Zhang Z, Yuan Y. A renewable low-frequency acoustic energy harvesting noise barrier for high-speed railways using a Helmholtz resonator and a PVDF film. Appl Energy. 2018;230:52.

    Article  CAS  Google Scholar 

  47. Zhao H, Xiao X, Xu P, Zhao T, Song L, Pan X, Mi J, Xu M, Wang ZL. Dual-tube helmholtz resonator-based triboelectric nanogenerator for highly efficient harvesting of acoustic energy. Adv Energy Mater. 2019;9:1902824.

    Article  CAS  Google Scholar 

  48. Hwang YJ, Choi S, Kim HS. Highly flexible all-nonwoven piezoelectric generators based on electrospun poly (vinylidene fluoride). Sens Actuator A Phys. 2019;300:111672.

    Article  CAS  Google Scholar 

  49. Lee B-S, Park B, Yang H-S, Han JW, Choong C, Bae J, Lee K, Yu W-R, Jeong U, Chung U-I. Effects of substrate on piezoelectricity of electrospun poly (vinylidene fluoride)-nanofiber-based energy generators. ACS Appl Mater Interfaces. 2014;6:3520.

    Article  CAS  Google Scholar 

  50. Li B, Zhang F, Guan S, Zheng J, Xu C. Wearable piezoelectric device assembled by one-step continuous electrospinning. J Mater Chem C. 2016;4:6988.

    Article  CAS  Google Scholar 

  51. You S, Zhang L, Gui J, Cui H, Guo S. A flexible piezoelectric nanogenerator based on aligned P (VDF-TrFE) nanofibers. Micromachines. 2019;10:302.

    Article  Google Scholar 

  52. Fang J, Niu H, Wang H, Wang X, Lin T. Enhanced mechanical energy harvesting using needleless electrospun poly (vinylidene fluoride) nanofibre webs. Energy Environ Sci. 2013;6:2196.

    Article  CAS  Google Scholar 

  53. Reneker DH, Yarin AL. Electrospinning jets and polymer nanofibers. Polymer. 2008;49:2387.

    Article  CAS  Google Scholar 

  54. Lei T, Cai X, Wang X, Yu L, Hu X, Zheng G, Lv W, Wang L, Wu D, Sun D. Spectroscopic evidence for a high fraction of ferroelectric phase induced in electrospun polyvinylidene fluoride fibers. RSC Adv. 2013;3:24952.

    Article  CAS  Google Scholar 

  55. Lang C, Fang J, Shao H, Wang H, Yan G, Ding X, Lin T. High-output acoustoelectric power generators from poly (vinylidenefluoride-co-trifluoroethylene) electrospun nano-nonwovens. Nano Energy. 2017;35:146.

    Article  CAS  Google Scholar 

  56. Andrew J, Clarke D. Enhanced ferroelectric phase content of polyvinylidene difluoride fibers with the addition of magnetic nanoparticles. Langmuir. 2008;24:8435.

    Article  CAS  Google Scholar 

  57. Martins P, Lopes A, Lanceros-Mendez S. Electroactive phases of poly (vinylidene fluoride): Determination, processing and applications. Prog Polym Sci. 2014;39:683.

    Article  CAS  Google Scholar 

  58. Yang L, Zhao Q, Chen K, Ma Y, Wu Y, Ji H, Qiu J. PVDF-based composition-gradient multilayered nanocomposites for flexible high-performance piezoelectric nanogenerators. ACS Appl Mater Interfaces. 2020;12:11045.

    Article  CAS  Google Scholar 

  59. Jung W-S, Lee M, Baek S-H, Jung IK, Yoon S-J, Kang C-Y. Structural approaches for enhancing output power of piezoelectric polyvinylidene fluoride generator. Nano Energy. 2016;22:514.

    Article  CAS  Google Scholar 

  60. Liu H, Zhong J, Lee C, Lee S-W, Lin L. A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications. Appl Phys Rev. 2018;5:041306.

    Article  Google Scholar 

  61. Jiang H, Yang J, Xu F, Wang Q, Liu W, Chen Q, Wang C, Zhang X, Zhu G. VDF-content-guided selection of piezoelectric P (VDF-TrFE) films in sensing and energy harvesting applications. Energy Convers Manage. 2020;211:112771.

    Article  CAS  Google Scholar 

  62. Lü C, Wu S, Lu B, Zhang Y, Du Y, Feng X. Ultrathin flexible piezoelectric sensors for monitoring eye fatigue. J Micromech Microeng. 2018;28:025010.

    Article  Google Scholar 

  63. Yang J, Chen Q, Xu F, Jiang H, Liu W, Zhang X, Jiang Z, Zhu G. Epitaxy enhancement of piezoelectric properties in P (VDF-TrFE) copolymer films and applications in sensing and energy harvesting. Adv Electron Mater. 2020;6:2000578.

    Article  CAS  Google Scholar 

  64. Volandri G, Di Puccio F, Forte P, Carmignani C. Biomechanics of the tympanic membrane. J Biomech. 2011;44:1219.

    Article  CAS  Google Scholar 

  65. Leventhall HG. Low frequency noise and annoyance. Noise Health. 2004;6:59.

    CAS  Google Scholar 

  66. Guo Z, Liu S, Hu X, Zhang Q, Shang F, Song S, Xiang Y. Self-powered sound detection and recognition sensors based on flexible polyvinylidene fluoride-trifluoroethylene films enhanced by in-situ polarization. Sens Actuator A Phys. 2020;306:111970.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Science and Technology Commission of Shanghai Municipality (STCSM, Grant No. 21520711600 and 20ZR1408200) and the National Natural Science Foundation of China (NSFC, Grant No. 61774043).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zaixiu Jiang, Xiaoqing Zhang or Guodong Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2233 kb)

Supplementary file2 (MP4 4879 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Yang, J., Dong, R. et al. Wave-Shaped Piezoelectric Nanofiber Membrane Nanogenerator for Acoustic Detection and Recognition. Adv. Fiber Mater. 3, 368–380 (2021). https://doi.org/10.1007/s42765-021-00095-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-021-00095-7

Keywords

Navigation