Skip to main content

Advertisement

Log in

Recent Advances on Electrospun Nanofiber Materials for Post-lithium Ion Batteries

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Lithium ion batteries (LIBs) have dominated the portable electric market over decades; however, the limited and unevenly distributed lithium resources induce concerns on their future large-scale applications. Increasing efforts have been endeavored on exploring post-Li ion batteries, such as Na-ion, K-ion, Al-ion and Mg-ion batteries, due to the high abundance of the corresponding elements in Earth crust. Manufacturing reliable electrode materials is the key to develop these new battery systems. Facile and scalable electrospinning has been widely utilized in preparing mechanically stable, flexible and conductive nanofiber electrodes as successfully proven in LIBs. In recent years, tremendous efforts have been devoted to electrospinning nanofiber electrodes for post-Li ion batteries and discernible progress in the electrochemical performance has been witnessed. Herein, we aim to review the-state-of-the-art advances made in electrospun nanofiber materials in optimizing post-Li ion battery technology by surveying the correlations among the morphology, the surface chemistry, the structure of electrospun nanofibers, and the post-Li ion batteries performance. Based on intensive investigations and insightful understandings, perspectives to the future design of electrospun nanofiber electrodes are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Copyright 2016, the Royal Society of Chemistry. c Schematic illustration of the process to prepare porous carbon nanofiber/sulfur cathode; galvanostatic charge/discharge profiles and reversible capacity vs. current density [33]. Copyright 2011, The Royal Society of Chemistry

Fig. 3

Copyright 2017, WILEY–VCH. c Schematic illustration of the preparation processes of the carbon nanotubes @carbon nanofibers-sulfur cathode, d, e electrochemical performance of cathode [15]. Copyright 2014, The Royal Society of Chemistry

Fig. 4

Copyright 2018, Elsevier. b, c, d TEM images of porous carbon nanofibers/sulfur/black phosphorus quantum dots during lithiation. e cyclic capacities at 0.1C for 200 cycles and f rate capacities from 0.1C to 4C for of porous carbon nanofiber/sulfur and porous carbon nanofiber/sulfur/ phosphorus quantum dots electrodes [46]. Copyright 2018, Springer Nature

Fig. 5

Copyright 2016, American Chemical Society

Fig. 6

Copyright 2018, WILEY–VCH. c Schematic configuration of rGO-PAN/MOF-PAN separator, d the electrochemistry performance of LSBs with PP and MOF-PAN/rGO-PAN separators [73]. Copyright 2020, Elsevier

Fig. 7

Copyright 2014, American Chemical Society. b Element composition of carbon nanofibers at different carbonization temperatures. c electrochemistry of carbon nanofibers anodes annealed at different temperatures [86]. Copyright 2016, WILEY–VCH

Fig. 8

Copyright 2020, Elsevier. c SEM image of MoS2 @CNFs and d cyclic capacities and Coulombic efficiencies of MoS2@CNFs anodes in SIBs at 1 A g−1 [81]. Copyright 2018, American Chemical Society. e, g Cycle and rate performance of FeOx/CNF anodes in SIBs [32]. Copyright 2017, Elsevier

Fig. 9

Copyright 2019, WILEY–VCH. d Schematic illustration of NaVPO4F/carbon nanofibers and e cycle performance of NaTi2(PO4)3 (anode)//NaVPO4F/C (cathode) full battery [96]. Copyright 2017, WILEY–VCH

Fig. 10

Copyright 2019, the Royal Society of Chemistry b K0.7Fe0.5Mn0.5O2 nanowires 3D network and the electrochemical performance in KIBs [118]. Copyright 2016, American Chemical Society

Fig. 11

Copyright 2019, Elsevier

Similar content being viewed by others

References

  1. Peng S, Li L, Kong Yoong Lee J, Tian L, Srinivasan M, Adams S, Ramakrishna S. Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage. Nano Energy. 2016;22:361–95.

    Article  CAS  Google Scholar 

  2. Walter M, Kovalenko MV, Kravchyk KV. Challenges and benefits of post-lithium-ion batteries. New J Chem. 2020;44:1677–83.

    Article  CAS  Google Scholar 

  3. Narins TP. The battery business: lithium availability and the growth of the global electric car industry. Extr Ind Soc. 2017;4:321–8.

    Google Scholar 

  4. Zubi G, Dufo-Lopez R, Carvalho M, Pasaoglu G. The lithium-ion battery: state of the art and future perspectives. Renew Sustain Energy Rev. 2018;89:292–308.

    Article  Google Scholar 

  5. Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodium-ion batteries. Chem Rev. 2014;114:11636–82.

    Article  CAS  Google Scholar 

  6. Gao WF, Zhang XH, Zheng XH, Lin X, Cao HB, Zhi Y, Sun Z. Lithium carbonate recovery from cathode scrap of spent lithium-ion battery: a closed-loop process. Environ Sci Technol. 2017;51:1662–9.

    Article  CAS  Google Scholar 

  7. Sun YM, Liu NA, Cui Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nature Energy. 2016;1:16071.

    Article  CAS  Google Scholar 

  8. Schmuch R, Wagner R, Horpel G, Placke T, Winter M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nature Energy. 2018;3:267–78.

    Article  CAS  Google Scholar 

  9. Xu ZL, Kim JK, Kang K. Carbon nanomaterials for advanced lithium sulfur batteries. Nano Today. 2018;19:84–107.

    Article  CAS  Google Scholar 

  10. Seh ZW, Sun Y, Zhang Q, Cui Y. Designing high-energy lithium-sulfur batteries. Chem Soc Rev. 2016;45:5605–34.

    Article  CAS  Google Scholar 

  11. Abundance of elements in the earth’s crust and in the sea. In: Haynes WM, David RL, Thomas JB, editors. CRC handbook of chemistry and physics. 97th ed. Florida: CRC Press; 2017. pp. 14–17.

  12. Liu Q, Wang H, Jiang C, Tang Y. Multi-ion strategies towards emerging rechargeable batteries with high performance. Energy Storage Mater. 2019;23:566–86.

    Article  Google Scholar 

  13. Wang FX, Wu XW, Li CY, Zhu YS, Fu LJ, Wu YP, Liu X. Nanostructured positive electrode materials for post-lithium ion batteries. Energy Environ Sci. 2016;9:3570–611.

    Article  CAS  Google Scholar 

  14. Reneker DH, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology. 1996;7:216–23.

    Article  CAS  Google Scholar 

  15. Chen Y, Li X, Park K-S, Hong J, Song J, Zhou L, Mai Y-W, Huang H, Goodenough JB. Sulfur encapsulated in porous hollow CNTs@CNFs for high-performance lithium-sulfur batteries. J Mater Chem A. 2014;2:10126–30.

    Article  CAS  Google Scholar 

  16. Wang H, Zhang S, Deng C. In situ encapsulating metal oxides into core–shell hierarchical hybrid fibers for flexible zinc-ion batteries toward high durability and ultrafast capability for wearable applications. ACS Appl Mater Interfaces. 2019;11:35796–808.

    Article  CAS  Google Scholar 

  17. Gong Z, Wu Q, Wang F, Li X, Fan X, Yang H, Luo Z. A hierarchical micro/mesoporous carbon fiber/sulfur composite for high-performance lithium–sulfur batteries. RSC Adv. 2016;6:37443–51.

    Article  CAS  Google Scholar 

  18. Li YF, Li QH, Tan ZC. A review of electrospun nanofiber-based separators for rechargeable lithium-ion batteries. J Power Sources. 2019;443:227262.

    Article  CAS  Google Scholar 

  19. Li C, Qin B, Zhang Y, Varzi A, Passerini S, Wang J, Dong J, Zeng D, Liu Z, Cheng H. Single-ion conducting electrolyte based on electrospun nanofibers for high-performance lithium batteries. Adv Energy Mater. 2019;9:1803422.

    Article  CAS  Google Scholar 

  20. Weng W, Kurihara R, Wang J, Shiratori S. Electrospun carbon nanofiber-based composites for lithium-ion batteries: structure optimization towards high performance. Compos Commun. 2019;15:135–48.

    Article  Google Scholar 

  21. Li W, Li M, Adair KR, Sun X, Yu Y. Carbon nanofiber-based nanostructures for lithium-ion and sodium-ion batteries. J Mater Chem A. 2017;5:13882–906.

    Article  CAS  Google Scholar 

  22. Klein KL, Melechko AV, McKnight TE, Retterer ST, Rack PD, Fowlkes JD, Joy DC, Simpson ML. Surface characterization and functionalization of carbon nanofibers. J Appl Phys. 2008;103:061301.

    Article  CAS  Google Scholar 

  23. Li X, Chen Y, Huang H, Mai Y-W, Zhou L. Electrospun carbon-based nanostructured electrodes for advanced energy storage—A review. Energy Storage Mater. 2016;5:58–92.

    Article  CAS  Google Scholar 

  24. Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramkumar SS. Electrospinning of nanofibers. J Appl Polym Sci. 2005;96:557–69.

    Article  CAS  Google Scholar 

  25. Li D, Xia Y. Electrospinning of nanofibers: reinventing the wheel? Adv Mater. 2004;16:1151–70.

    Article  CAS  Google Scholar 

  26. Bubakir MM, Li H, Barhoum A, Yang W. Advances in melt electrospinning technique. In: Barhoum A, Bechelany M, Makhlouf ASH, editors. Handbook of Nanofibers. Cham, Switzerland: Springer; 2018. p. 1–32.

    Google Scholar 

  27. Rafiei SM, Noroozi B, Mottaghitable V, Haghi AK. Mathematical modeling in electrospinning process of nanofibers: a detailed review. Cellul Chem Technol. 2013;47(5):323–38.

    CAS  Google Scholar 

  28. Lei T, Chen W, Hu Y, Lv W, Lv X, Yan Y, Huang J, Jiao Y, Chu J, Yan C, Wu C, Li Q, He W, Xiong J. A nonflammable and thermotolerant separator suppresses polysulfide dissolution for safe and long-cycle lithium-sulfur batteries. Adv Energy Mater. 2018;8:1802441.

    Article  CAS  Google Scholar 

  29. Xu ZL, Huang JQ, Chong WG, Qin XY, Wang XY, Zhou LM, Kim JK. In situ TEM study of volume expansion in porous carbon nanofiber/sulfur cathodes with exceptional high-rate performance. Adv Energy Mater. 2017;7:1602078.

    Article  CAS  Google Scholar 

  30. Han H, Chen X, Qian J, Zhong F, Feng X, Chen W, Ai X, Yang H, Cao Y. Hollow carbon nanofibers as high-performance anode materials for sodium-ion batteries. Nanoscale. 2019;11:21999–2005.

    Article  CAS  Google Scholar 

  31. Huang J-Q, Zhang B, Xu Z-L, Abouali S, Akbari Garakani M, Huang J, Kim J-K. Novel interlayer made from Fe3C/carbon nanofiber webs for high performance lithium–sulfur batteries. J Power Sources. 2015;285:43–50.

    Article  CAS  Google Scholar 

  32. Xu Z-L, Yao S, Cui J, Zhou L, Kim J-K. Atomic scale amorphous FeOx/carbon nanofiber anodes for Li-ion and Na-ion batteries. Energy Storage Mater. 2017;8:10–9.

    Article  Google Scholar 

  33. Ji L, Rao M, Aloni S, Wang L, Cairns EJ, Zhang Y. Porous carbon nanofiber–sulfur composite electrodes for lithium/sulfur cells. Energy Environ Sci. 2011;4:5053–9.

    Article  CAS  Google Scholar 

  34. Zhang B, Kang F, Tarascon J-M, Kim J-K. Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Prog Mater Sci. 2016;76:319–80.

    Article  CAS  Google Scholar 

  35. Mao X, Hatton T, Rutledge G. A review of electrospun carbon fibers as electrode materials for energy storage. Curr Org Chem. 2013;17:1390–401.

    Article  CAS  Google Scholar 

  36. Manop Panapoy ADBK. Electrical conductivity of PAN-based cabon nanofibers prepared by electrospinning method. Thammasat Int J Sci Tech. 2008;13(Special Edition):11–7.

    Google Scholar 

  37. Hu J, Xu Z, Li X, Liang S, Chen Y, Lyu L, Yao H, Lu Z, Zhou L. Partially graphitic hierarchical porous carbon nanofiber for high performance supercapacitors and lithium ion batteries. J Power Sources. 2020;462:228098.

    Article  CAS  Google Scholar 

  38. Hu J, Wang Z, Fu Y, Lyu L, Lu Z, Zhou L. In situ assembly of MnO2 nanosheets on sulfur-embedded multichannel carbon nanofiber composites as cathodes for lithium-sulfur batteries. Sci China Mater. 2020;63:728–38.

    Article  CAS  Google Scholar 

  39. Lin L, Pei F, Peng J, Fu A, Cui J, Fang X, Zheng N. Fiber network composed of interconnected yolk-shell carbon nanospheres for high-performance lithium-sulfur batteries. Nano Energy. 2018;54:50–8.

    Article  CAS  Google Scholar 

  40. Li Z, Zhang JT, Chen YM, Li J, Lou XW. Pie-like electrode design for high-energy density lithium-sulfur batteries. Nat Commun. 2015;6:8850.

    Article  CAS  Google Scholar 

  41. Liang G, Wu J, Qin X, Liu M, Li Q, He YB, Kim JK, Li B, Kang F. Ultrafine TiO2 decorated carbon nanofibers as multifunctional interlayer for high-performance lithium-sulfur battery. ACS Appl Mater Interfaces. 2016;8:23105–13.

    Article  CAS  Google Scholar 

  42. Wang H, Zhang B, Zeng X, Yan L, Zheng J, Ling M, Hou Y, Lu Y, Liang C. 3D porous carbon nanofibers with CeO2-decorated as cathode matrix for high performance lithium-sulfur batteries. J Power Sources. 2020;473:228588.

    Article  CAS  Google Scholar 

  43. Zhen Li YJ, Yuan L, Yi Z, Chao Wu, Liu Y, Strasser P, Huang Y. A highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core-shell structured cathode for Li-S batteries. ACS Nano. 2014;8(9):9295–303.

    Article  CAS  Google Scholar 

  44. Lee JS, Kim W, Jang J, Manthiram A. Sulfur-embedded activated multichannel carbon nanofiber composites for long-life, high-rate lithium-sulfur batteries. Adv Energy Mater. 2017;7:1601943.

    Article  CAS  Google Scholar 

  45. Rahaman MSA, Ismail AF, Mustafa A. A review of heat treatment on polyacrylonitrile fiber. Polym Degrad Stab. 2007;92:1421–32.

    Article  CAS  Google Scholar 

  46. Xu ZL, Lin S, Onofrio N, Zhou L, Shi F, Lu W, Kang K, Zhang Q, Lau SP. Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries. Nat Commun. 2018;9:4164.

    Article  CAS  Google Scholar 

  47. Wu F, Shi LL, Mu DB, Xu HL, Wu BR. A hierarchical carbon fiber/sulfur composite as cathode material for Li-S batteries. Carbon. 2015;86:146–55.

    Article  CAS  Google Scholar 

  48. Yao SS, Guo RD, Xie FW, Wu ZZ, Gao KD, Zhang CJ, Shen XQ, Li TB, Qin SB. Electrospun three-dimensional cobalt decorated nitrogen doped carbon nanofibers network as freestanding electrode for lithium/sulfur batteries. Electrochim Acta. 2020;337:135765.

    Article  CAS  Google Scholar 

  49. Zhang YX, Wang PP, Tan H, Fan XY, Huang K. Free-standing sulfur and graphitic porous carbon nanofibers composite cathode for high electrochemical performance of lithium-sulfur batteries. J Electrochem Soc. 2018;165:A741–5.

    Article  CAS  Google Scholar 

  50. Li X, Fu N, Zou J, Zeng X, Chen Y, Zhou L, Huang H. Sulfur-impregnated N-doped hollow carbon nanofibers as cathode for lithium-sulfur batteries. Mater Lett. 2017;209:505–8.

    Article  CAS  Google Scholar 

  51. Song X, Wang S, Bao Y, Liu G, Sun W, Ding L-X, Liu H, Wang H. A high strength, free-standing cathode constructed by regulating graphitization and the pore structure in nitrogen-doped carbon nanofibers for flexible lithium–sulfur batteries. J Mater Chem A. 2017;5:6832–9.

    Article  CAS  Google Scholar 

  52. Zeng L, Pan F, Li W, Jiang Y, Zhong X, Yu Y. Free-standing porous carbon nanofibers-sulfur composite for flexible Li-S battery cathode. Nanoscale. 2014;6:9579–87.

    Article  CAS  Google Scholar 

  53. Zhang YZ, Zhang Z, Liu S, Li GR, Gao XP. Free-standing porous carbon nanofiber/carbon nanotube film as sulfur immobilizer with high areal capacity for lithium-sulfur battery. ACS Appl Mater Interfaces. 2018;10:8749–57.

    Article  CAS  Google Scholar 

  54. Deng N, Kang W, Ju J, Fan L, Zhuang X, Ma X, He H, Zhao Y, Cheng B. Polyvinyl alcohol-derived carbon nanofibers/carbon nanotubes/sulfur electrode with honeycomb-like hierarchical porous structure for the stable-capacity lithium/sulfur batteries. J Power Sources. 2017;346:1–12.

    Article  CAS  Google Scholar 

  55. Deng NP, Ju JG, Yan J, Zhou XH, Qin QQ, Zhang K, Liang YY, Li QX, Kang WM, Cheng BW. CeF3-doped porous carbon nanofibers as sulfur immobilizers in cathode material for high-performance lithium-sulfur batteries. ACS Appl Mater Interfaces. 2018;10:12626–38.

    Article  CAS  Google Scholar 

  56. Chu RX, Lin J, Wu CQ, Zheng J, Chen YL, Zhang J, Han RH, Zhang Y, Guo H. Reduced graphene oxide coated porous carbon-sulfur nanofiber as a flexible paper electrode for lithium-sulfur batteries. Nanoscale. 2017;9:9129–38.

    Article  CAS  Google Scholar 

  57. Han S, Pu X, Li X, Liu M, Li M, Feng N, Dou S, Hu W. High areal capacity of Li-S batteries enabled by freestanding CNF/rGO electrode with high loading of lithium polysulfide. Electrochim Acta. 2017;241:406–13.

    Article  CAS  Google Scholar 

  58. Liang Y, Deng N, Ju J, Zhou X, Yan J, Zhong C, Kang W, Cheng B. Facilitation of lithium polysulfides adsorption by nitrogen doped carbon nanofibers with 3D interconnected pore structures for high-stable lithium-sulfur batteries. Electrochim Acta. 2018;281:257–65.

    Article  CAS  Google Scholar 

  59. Ma XZ, Jin B, Wang HY, Hou JZ, Zhong XB, Wang HH, Xin PM. S-TiO2 composite cathode materials for lithium/sulfur batteries. J Electroanal Chem. 2015;736:127–31.

    Article  CAS  Google Scholar 

  60. Ye J, He F, Nie J, Cao Y, Yang H, Ai X. Sulfur/carbon nanocomposite-filled polyacrylonitrile nanofibers as a long life and high capacity cathode for lithium–sulfur batteries. J Mater Chem A. 2015;3:7406–12.

    Article  CAS  Google Scholar 

  61. Kalybekkyzy S, Mentbayeva A, Kahraman MV, Zhang Y, Bakenov Z. Flexible S/DPAN/KB nanofiber composite as binder-free cathodes for Li-S batteries. J Electrochem Soc. 2019;166:A5396–402.

    Article  CAS  Google Scholar 

  62. Kim JH, Choi J, Seo J, Kwon J, Paik U. Two-dimensional Nafion nanoweb anion-shield for improved electrochemical performances of lithium–sulfur batteries. J Mater Chem A. 2016;4:11203–6.

    Article  CAS  Google Scholar 

  63. Zhu X, Ouyang Y, Chen J, Zhu X, Luo X, Lai F, Zhang H, Miao Y-E, Liu T. In situ extracted poly(acrylic acid) contributing to electrospun nanofiber separators with precisely tuned pore structures for ultra-stable lithium–sulfur batteries. J Mater Chem A. 2019;7:3253–63.

    Article  CAS  Google Scholar 

  64. Su YS, Manthiram A. Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat Commun. 2012;3:1166.

    Article  Google Scholar 

  65. Singhal R, Chung S-H, Manthiram A, Kalra V. A free-standing carbon nanofiber interlayer for high-performance lithium–sulfur batteries. J Mater Chem A. 2015;3:4530–8.

    Article  CAS  Google Scholar 

  66. Yao SS, Tang H, Liu MQ, Chen LL, Jing MX, Shen XQ, Li TB, Tan JL. TiO2 nanoparticles incorporation in carbon nanofiber as a multifunctional interlayer toward ultralong cycle-life lithium-sulfur batteries. J Alloy Compd. 2019;788:639–48.

    Article  CAS  Google Scholar 

  67. Tang F, He T, Zhang H, Wu X, Li Y, Long F, Xiang Y, Zhu L, Wu J, Wu X. The MnO@N-doped carbon composite derived from electrospinning as cathode material for aqueous zinc ion battery. J Electroanal Chem. 2020;873:114368.

    Article  CAS  Google Scholar 

  68. Wang ML, Song YZ, Sun ZT, Shao YL, Wei CH, Xia Z, Tian ZN, Liu ZF, Sun JY. Conductive and catalytic VTe2@MgO heterostructure as effective polysulfide promotor for lithium-sulfur batteries. ACS Nano. 2019;13:13235–43.

    Article  CAS  Google Scholar 

  69. Zhuang R, Yao S, Shen X, Li T. A freestanding MoO2-decorated carbon nanofibers interlayer for rechargeable lithium sulfur battery. Int J Energy Res. 2019;43:1111–20.

    Article  CAS  Google Scholar 

  70. Rao M, Geng X, Li X, Hu S, Li W. Lithium-sulfur cell with combining carbon nanofibers–sulfur cathode and gel polymer electrolyte. J Power Sources. 2012;212:179–85.

    Article  CAS  Google Scholar 

  71. Zhu P, Zhu JD, Zang J, Chen C, Lu Y, Jiang MJ, Yan CY, Dirican M, Selvan RK, Zhang XW. A novel bi-functional double-layer rGO-PVDF/PVDF composite nanofiber membrane separator with enhanced thermal stability and effective polysulfide inhibition for high-performance lithium-sulfur batteries. J Mater Chem A. 2017;5:15096–104.

    Article  CAS  Google Scholar 

  72. Gupta A, Sivaram S. Separator membranes for lithium–sulfur batteries: design principles, structure, and performance. Energy Technol. 2019;7:1800819.

    Article  CAS  Google Scholar 

  73. Zhou C, He Q, Li Z, Meng J, Hong X, Li Y, Zhao Y, Xu X, Mai L. A robust electrospun separator modified with in situ grown metal-organic frameworks for lithium-sulfur batteries. Chem Eng J. 2020;395:124979.

    Article  CAS  Google Scholar 

  74. Wang XE, Girard GMA, Zhu HJ, Yunis R, MacFarlane DR, Mecerreyes D, Bhattacharyya AJ, Howlett PC, Forsyth M. Poly(ionic liquid)s/electrospun nanofiber composite polymer electrolytes for high energy density and safe Li metal batteries. Acs Applied Energy Mater. 2019;2:6237–45.

    Article  CAS  Google Scholar 

  75. Liang Z, Zheng GY, Liu C, Liu N, Li WY, Yan K, Yao HB, Hsu PC, Chu S, Cui Y. Polymer nanofiber-guided uniform lithium deposition for battery electrodes. Nano Lett. 2015;15:2910–6.

    Article  CAS  Google Scholar 

  76. Li CC, Qin BS, Zhang YF, Varzi A, Passerini S, Wang JY, Dong JM, Zeng DL, Liu ZH, Cheng HS. Single-Ion conducting electrolyte based on electrospun nanofibers for high-performance lithium batteries. Adv Energy Mater. 2019;9:201803422.

    Google Scholar 

  77. Fang Y, Yu X-Y, Lou XW. Nanostructured electrode materials for advanced sodium-Ion batteries. Matter. 2019;1:90–114.

    Article  Google Scholar 

  78. Lin D, Li K, Wang Q, Lyu L, Li B, Zhou L. Rate-independent and ultra-stable low-temperature sodium storage in pseudocapacitive TiO2 nanowires. J Mater Chem A. 2019;7:19297–304.

    Article  CAS  Google Scholar 

  79. Zhao X, Luo M, Zhao WX, Xu RM, Liu Y, Shen H. SnO2 Nanosheets Anchored on a 3D, Bicontinuous Electron and Ion Transport Carbon Network for High-Performance Sodium-Ion Batteries. ACS Appl Mater Interfaces. 2018;10:38006–14.

    Article  CAS  Google Scholar 

  80. Zhang DM, Jia JH, Yang CC, Jiang Q. Fe7Se8 nanoparticles anchored on N-doped carbon nanofibers as high-rate anode for sodium-ion batteries. Energy Storage Mater. 2020;24:439–49.

    Article  Google Scholar 

  81. Li W, Bi R, Liu G, Tian Y, Zhang L. 3D Interconnected MoS2 with enlarged interlayer spacing grown on carbon nanofibers as a flexible anode toward superior sodium-ion batteries. ACS Appl Mater Interfaces. 2018;10:26982–9.

    Article  CAS  Google Scholar 

  82. Liu M, Zhang P, Qu Z, Yan Y, Lai C, Liu T, Zhang S. Conductive carbon nanofiber interpenetrated graphene architecture for ultra-stable sodium ion battery. Nat Commun. 2019;10:3917.

    Article  CAS  Google Scholar 

  83. Wang Y, Liu Y, Liu Y, Shen Q, Chen C, Qiu F, Li P, Jiao L, Qu X. Recent advances in electrospun electrode materials for sodium-ion batteries. J Energy Chem. 2021;54:225–41.

    Article  Google Scholar 

  84. Xu ZL, Park J, Yoon C, Kim H, Kang K. Graphitic carbon materials for advanced sodium-ion batteries. Small Methods. 2019;3:201800227.

    Article  Google Scholar 

  85. Xu ZL, Yoon G, Park KY, Park H, Tamwattana O, Kim SJ, Seong WM, Kang K. Tailoring sodium intercalation in graphite for high energy and power sodium ion batteries. Nat Commun. 2019;10:2598.

    Article  CAS  Google Scholar 

  86. Zhang B, Ghimbeu CM, Laberty C, Vix-Guterl C, Tarascon J-M. Correlation between microstructure and Na storage behavior in hard carbon. Adv Energy Mater. 2016;6:1501588.

    Article  CAS  Google Scholar 

  87. Alvin S, Cahyadi HS, Hwang J, Chang W, Kwak SK, Kim J. Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon. Adv Energy Mater. 2020;10:202000283.

    Google Scholar 

  88. Saurel D, Orayech B, Xiao BW, Carriazo D, Li XL, Rojo T. From charge storage mechanism to performance: a roadmap toward high specific energy sodium-ion batteries through carbon anode optimization. Adv Energy Mater. 2018;8:1703268.

    Article  CAS  Google Scholar 

  89. Shan C, Feng X, Yang J, Yang X, Guan H-Y, Argueta M, Wu X-L, Liu D-S, Austin DJ, Nie P, Yue Y. Hierarchical porous carbon pellicles: electrospinning synthesis and applications as anodes for sodium-ion batteries with an outstanding performance. Carbon. 2020;157:308–15.

    Article  CAS  Google Scholar 

  90. Ma M, Yao Y, Wu Y, Yu Y. Progress and prospects of transition metal sulfides for sodium storage. Adv Fiber Mater. 2020. https://doi.org/10.1007/s42765-020-00052-w.

    Article  Google Scholar 

  91. Wang R, Chen S, Ren D, Liu S, He B, Gong Y, Wang H. Plasma treated TiO2/C nanofibers as high performance anode materials for sodium-ion batteries. RSC Adv. 2019;9:18451–8.

    Article  CAS  Google Scholar 

  92. Wang L, Wei Z, Mao M, Wang H, Li Y, Ma J. Metal oxide/graphene composite anode materials for sodium-ion batteries. Energy Storage Mater. 2019;16:434–54.

    Article  Google Scholar 

  93. Liu Q, Hu Z, Chen M, Zou C, Jin H, Wang S, Chou SL, Dou SX. Recent progress of layered transition metal oxide cathodes for sodium-ion batteries. Small. 2019;15:1805381.

    Article  CAS  Google Scholar 

  94. Liu Y, Shen Q, Zhao X, Zhang J, Liu X, Wang T, Zhang N, Jiao L, Chen J, Fan LZ. Hierarchical engineering of porous P2-Na2/3Ni1/3Mn2/3O2 nanofibers assembled by nanoparticles enables superior sodium-ion storage cathodes. Adv Funct Mater. 2019;30:1907837.

    Article  CAS  Google Scholar 

  95. Liang L, Sun X, Denis DK, Zhang J, Hou L, Liu Y, Yuan C. Ultralong layered NaCrO2 nanowires: a competitive wide-temperature-operating cathode for extraordinary high-rate sodium-ion batteries. ACS Appl Mater Interfaces. 2019;11:4037–46.

    Article  CAS  Google Scholar 

  96. Jin T, Liu Y, Li Y, Cao K, Wang X, Jiao L. Electrospun NaVPO4F/C nanofibers as self-standing cathode material for ultralong cycle life Na-ion batteries. Adv Energy Mater. 2017;7:1700087.

    Article  CAS  Google Scholar 

  97. Wang F, Zhang N, Zhao X, Wang L, Zhang J, Wang T, Liu F, Liu Y, Fan LZ. Realizing a high-performance na-storage cathode by tailoring ultrasmall Na2FePO4F nanoparticles with facilitated reaction kinetics. Adv Sci (Weinh). 2019;6:1900649.

    Article  CAS  Google Scholar 

  98. Kajiyama S, Kikkawa J, Hoshino J, Okubo M, Hosono E. Assembly of Na3V2(PO4)3 nanoparticles confined in a one-dimensional carbon sheath for enhanced sodium-ion cathode properties. Chem Eur J. 2014;20:12636–40.

    Article  CAS  Google Scholar 

  99. Li H, Bai Y, Wu F, Li Y, Wu C. Budding willow branches shaped Na3V2(PO4)3/C nanofibers synthesized via an electrospinning technique and used as cathode material for sodium ion batteries. J Power Sources. 2015;273:784–92.

    Article  CAS  Google Scholar 

  100. Hu Y, Wu L, Liao GX, Yang Y, Ye F, Chen JB, Zhu X, Zhong SK. Electrospinning synthesis of Na2MnPO4F/C nanofibers as a high voltage cathode material for Na-ion batteries. Ceram Int. 2018;44:17577–84.

    Article  CAS  Google Scholar 

  101. Zhijiang C, Qing Z, Cong Z, Xianyou S, Yuanpei L. Development of a sodium/electrospun poly(5-cyanoindole) nanofiber secondary battery system with high performance. Synth Met. 2017;231:15–8.

    Article  CAS  Google Scholar 

  102. Janakiraman S, Surendran A, Ghosh S, Anandhan S, Venimadhav A. Electroactive poly(vinylidene fluoride) fluoride separator for sodium ion battery with high coulombic efficiency. Solid State Ionics. 2016;292:130–5.

    Article  CAS  Google Scholar 

  103. Janakiraman S, Surendran A, Biswal R, Ghosh S, Anandhan S, Venimadhav A. Electrospun electroactive polyvinylidene fluoride-based fibrous polymer electrolyte for sodium ion batteries. Mater Res Express. 2019;6:086318.

    Article  CAS  Google Scholar 

  104. Zhang WC, Liu YJ, Guo ZP. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci Adv. 2019;5:eaav7412.

    Article  CAS  Google Scholar 

  105. Lei K-X, Wang J, Chen C, Li S-Y, Wang S-W, Zheng S-J, Li F-J. Recent progresses on alloy-based anodes for potassium-ion batteries. Rare Met. 2020;39:989–1004.

    Article  CAS  Google Scholar 

  106. Zhao X, Xiong P, Meng J, Liang Y, Wang J, Xu Y. High rate and long cycle life porous carbon nanofiber paper anodes for potassium-ion batteries. J Mater Chem A. 2017;5:19237–44.

    Article  CAS  Google Scholar 

  107. Yang W, Zhou J, Wang S, Zhang W, Wang Z, Lv F, Wang K, Sun Q, Guo S. Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage. Energy Environ Sci. 2019;12:1605–12.

    Article  CAS  Google Scholar 

  108. Adams RA, Syu JM, Zhao Y, Lo CT, Varma A, Pol VG. Binder-free N- and O-rich carbon nanofiber anodes for long cycle life K-ion batteries. ACS Appl Mater Interfaces. 2017;9:17872–81.

    Article  CAS  Google Scholar 

  109. Tian S, Jiang Q, Cai T, Wang Y, Wang D, Kong D, Ren H, Zhou J, Xing W. Graphitized electrospun carbon fibers with superior cyclability as a free-standing anode of potassium-ion batteries. J Power Sources. 2020;474:228479.

    Article  CAS  Google Scholar 

  110. Shen Q, Jiang P, He H, Chen C, Liu Y, Zhang M. Encapsulation of MoSe2 in carbon fibers as anodes for potassium ion batteries and nonaqueous battery-supercapacitor hybrid devices. Nanoscale. 2019;11:13511–20.

    Article  CAS  Google Scholar 

  111. Yao Y, Xu R, Chen M, Cheng X, Zeng S, Li D, Zhou X, Wu X, Yu Y. Encapsulation of SeS2 into nitrogen-doped free-standing carbon nanofiber film enabling long cycle life and high energy density K-SeS2 battery. ACS Nano. 2019;13:4695–704.

    Article  CAS  Google Scholar 

  112. Tian Z, Chui N, Lian R, Yang Q, Wang W, Yang C, Rao D, Huang J, Zhang Y, Lai F, Liu C, Liu T. Dual anionic vacancies on carbon nanofiber threaded MoSSe arrays: a free-standing anode for high-performance potassium-ion storage. Energy Storage Mater. 2020;27:591–8.

    Article  Google Scholar 

  113. Zhu X, Gao J, Li J, Hu G, Li J, Zhang G, Xiang B. Self-supporting N-rich Cu2Se/C nanowires for highly reversible, long-life potassium-ion storage. Sustain Energy Fuels. 2020;4:2453–61.

    Article  CAS  Google Scholar 

  114. Song K, Liu C, Mi L, Chou S, Chen W, Shen C. Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries. Small. 2019. https://doi.org/10.1002/smll.201903194.

    Article  Google Scholar 

  115. Loaiza LC, Monconduit L, Seznec V. Si and Ge-based anode materials for Li-, Na-, and K-ion batteries: a perspective from structure to electrochemical mechanism. Small. 2020;16:1905260.

    Article  CAS  Google Scholar 

  116. Wu Y, Hu S, Xu R, Wang J, Peng Z, Zhang Q, Yu Y. Boosting potassium-ion battery performance by encapsulating red phosphorus in free-standing nitrogen-doped porous hollow carbon nanofibers. Nano Lett. 2019;19:1351–8.

    Article  CAS  Google Scholar 

  117. Ge X, Liu S, Qiao M, Du Y, Li Y, Bao J, Zhou X. Enabling superior electrochemical properties for highly efficient potassium storage by impregnating ultrafine Sb nanocrystals within nanochannel-containing carbon nanofibers. Angew Chem Int Ed Engl. 2019;58:14578–83.

    Article  CAS  Google Scholar 

  118. Wang X, Xu X, Niu C, Meng J, Huang M, Liu X, Liu Z, Mai L. Earth abundant Fe/Mn-based layered oxide interconnected nanowires for advanced K-ion full batteries. Nano Lett. 2017;17:544–50.

    Article  CAS  Google Scholar 

  119. Blanc LE, Kundu D, Nazar LF. Scientific challenges for the implementation of Zn-Ion batteries. Joule. 2020;4:771–99.

    Article  CAS  Google Scholar 

  120. Chen X, Wang L, Li H, Cheng F, Chen J. Porous V2O5 nanofibers as cathode materials for rechargeable aqueous zinc-ion batteries. J Energy Chem. 2019;38:20–5.

    Article  Google Scholar 

  121. Long J, Yang Z, Yang F, Cuan J, Wu J. Electrospun core-shell Mn3O4/carbon fibers as high-performance cathode materials for aqueous zinc-ion batteries. Electrochim Acta. 2020;344:136155.

    Article  CAS  Google Scholar 

  122. Kim C, Ahn BY, Wei T-S, Jo Y, Jeong S, Choi Y, Kim I-D, Lewis JA. High-power aqueous zinc-ion batteries for customized electronic devices. ACS Nano. 2018;12:11838–46.

    Article  CAS  Google Scholar 

  123. Liu S, Chen X, Zhang Q, Zhou J, Cai Z, Pan A. Fabrication of an inexpensive hydrophilic bridge on a carbon substrate and loading vanadium sulfides for flexible aqueous zinc-ion batteries. ACS Appl Mater Interfaces. 2019;11:36676–84.

    Article  CAS  Google Scholar 

  124. Hiralal P, Imaizumi S, Unalan HE, Matsumoto H, Minagawa M, Rouvala M, Tanioka A, Amaratunga GAJ. Nanomaterial-enhanced all-solid flexible Zinc-carbon batteries. ACS Nano. 2010;4:2730–4.

    Article  CAS  Google Scholar 

  125. Wang M, Zhang C, Meng T, Pu Z, Jin H, He D, Zhang J, Mu S. Iron oxide and phosphide encapsulated within N, P-doped microporous carbon nanofibers as advanced tri-functional electrocatalyst toward oxygen reduction/evolution and hydrogen evolution reactions and zinc-air batteries. J Power Sources. 2019;413:367–75.

    Article  CAS  Google Scholar 

  126. Peng W, Wang Y, Yang XX, Mao LC, Jin JH, Yang SL, Fu K, Li G. Co9S8 nanoparticles embedded in multiple doped and electrospun hollow carbon nanofibers as bifunctional oxygen electrocatalysts for rechargeable zinc-air battery. Appl Catal B Environ. 2020;268:118437.

    Article  CAS  Google Scholar 

  127. Wang XJ, Li Y, Jin T, Meng J, Jiao LF, Zhu M, Chen J. Electrospun thin-walled CuCo2O4@C nanotubes as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Nano Lett. 2017;17:7989–94.

    Article  CAS  Google Scholar 

  128. Yang W, Lu H, Cao Y, Jing P, Hu X, Yu H. A flexible free-standing cathode based on graphene-like MoSe2 nanosheets anchored on N-doped carbon nanofibers for rechargeable aluminum-ion batteries. Ionics. 2020;26:3405–13.

    Article  CAS  Google Scholar 

  129. Yang W, Lu H, Cao Y, Xu B, Deng Y, Cai W. Flexible free-standing MoS2/carbon nanofibers composite cathode for rechargeable aluminum-ion batteries. ACS Sustain Chem Eng. 2019;7:4861–7.

    Article  CAS  Google Scholar 

  130. Yang WW, Lu HM, Cao Y, Jing PC. Single-/few-layered ultrasmall WS2 nanoplates embedded in nitrogen-doped carbon nanofibers as a cathode for rechargeable aluminum batteries. J Power Sources. 2019;441:227173.

    Article  CAS  Google Scholar 

  131. Hu Y, Ye D, Luo B, Hu H, Zhu X, Wang S, Li L, Peng S, Wang L. A binder-free and free-standing cobalt sulfide@carbon nanotube cathode material for aluminum-ion batteries. Adv Mater. 2018;30:1703824.

    Article  CAS  Google Scholar 

  132. Elia GA, Ducros JB, Sotta D, Delhorbe V, Brun A, Marquardt K, Hahn R. Polyacrylonitrile separator for high-performance aluminum batteries with improved interface stability. ACS Appl Mater Interfaces. 2017;9:38381–9.

    Article  CAS  Google Scholar 

  133. Miao X, Chen Z, Wang N, Nuli Y, Wang J, Yang J, Hirano S-i. Electrospun V2MoO8 as a cathode material for rechargeable batteries with Mg metal anode. Nano Energy. 2017;34:26–35.

    Article  CAS  Google Scholar 

  134. Singh R, Janakiraman S, Khalifa M, Anandhan S, Ghosh S, Venimadhav A, Biswas K. An electroactive β-phase polyvinylidene fluoride as gel polymer electrolyte for magnesium–ion battery application. J Electroanal Chem. 2019;851:113417.

    Article  CAS  Google Scholar 

  135. Singh R, Janakiraman S, Agrawal A, Ghosh S, Venimadhav A, Biswas K. An amorphous poly(vinylidene fluoride-co-hexafluoropropylene) based gel polymer electrolyte for magnesium ion battery. J Electroanal Chem. 2020;858:113788.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work described in this paper was supported by a grant from the Research Committee of The Hong Kong Polytechnic University under project code 1-BE3M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Long Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, F., Chen, C. & Xu, ZL. Recent Advances on Electrospun Nanofiber Materials for Post-lithium Ion Batteries. Adv. Fiber Mater. 3, 275–301 (2021). https://doi.org/10.1007/s42765-021-00070-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-021-00070-2

Keywords

Navigation