Skip to main content

Advertisement

Log in

Versatile Electrospinning for Structural Designs and Ionic Conductor Orientation in All-Solid-State Lithium Batteries

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Recent advances in next-generation energy storage devices have focused on flexible and wearable all-solid-state lithium batteries (ASSLBs), mainly because of their advantages in terms of safety and extensive applications. Among various technologies for the preparation of flexible electrodes, electrospinning is a straightforward operation and cost-effective mean for the facile fabrication of flexible nanofibers and the versatile design of nanofiber structure. Herein, current technologies for engineering electrospun nanofiber structures and their state-of-the-art implementation in flexible ASSLBs are reviewed. First, current strategies for nanofiber structural design, including advances in high-specific surface area, superior mechanical flexibility, and various nanostructures, are systematically discussed. Subsequently, the utilization of electrospun nanofibers in ASSLBs is reviewed. Electrospinning of flexible and highly ion-conductive solid-state electrolytes (SSEs) is emphasized, and current nanofiber structural designs for SSEs and electrodes for ASSLBs are introduced. Despite these advances, there have not been enough studies of the integration of versatile electrospinning techniques in nanofiber structural design for both SSEs and electrodes. In the final section, promising pathways to implement versatile electrospinning in flexible ASSLBs with superior electrochemical performance and stable cycling properties are discussed. Thus, this review provides a holistic overview of the state of the art of electrospinning for high-performance flexible ASSLBs, which could safely power next-generation flexible devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wang, S.J., Xiong, P., Zhang, J.Q., et al.: Recent progress on flexible lithium metal batteries: composite lithium metal anodes and solid-state electrolytes. Energy Storage Mater. 29, 310–331 (2020). https://doi.org/10.1016/j.ensm.2020.04.032

    Article  Google Scholar 

  2. Fan, L., Wei, S.Y., Li, S.Y., et al.: Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv. Energy Mater. 8, 1702657 (2018). https://doi.org/10.1002/aenm.201702657

    Article  CAS  Google Scholar 

  3. Zhu, J., Chen, L.B., Xu, Z., et al.: Electrospinning preparation of ultra-long aligned nanofibers thin films for high performance fully flexible lithium-ion batteries. Nano Energy 12, 339–346 (2015). https://doi.org/10.1016/j.nanoen.2014.10.026

    Article  CAS  Google Scholar 

  4. Sun, B., Long, Y.Z., Chen, Z.J., et al.: Recent advances in flexible and stretchable electronic devices via electrospinning. J. Mater. Chem. C 2, 1209–1219 (2014). https://doi.org/10.1039/c3tc31680g

    Article  CAS  Google Scholar 

  5. Qian, G.Y., Liao, X.B., Zhu, Y.X., et al.: Designing flexible lithium-ion batteries by structural engineering. ACS Energy Lett. 4, 690–701 (2019). https://doi.org/10.1021/acsenergylett.8b02496

    Article  CAS  Google Scholar 

  6. Yetisen, A.K., Qu, H., Manbachi, A., et al.: Nanotechnology in textiles. ACS Nano 10, 3042–3068 (2016). https://doi.org/10.1021/acsnano.5b08176

    Article  CAS  Google Scholar 

  7. Chinnappan, A., Baskar, C., Baskar, S., et al.: An overview of electrospun nanofibers and their application in energy storage, sensors and wearable/flexible electronics. J. Mater. Chem. C 5, 12657–12673 (2017). https://doi.org/10.1039/c7tc03058d

    Article  CAS  Google Scholar 

  8. Kenry, Lim, C.T.: Nanofiber technology: current status and emerging developments. Prog. Polym. Sci. 70, 1–17 (2017). https://doi.org/10.1016/j.progpolymsci.2017.03.002

  9. Yang, G., Li, X.L., He, Y., et al.: From nano to micro to macro: electrospun hierarchically structured polymeric fibers for biomedical applications. Prog. Polym. Sci. 81, 80–113 (2018). https://doi.org/10.1016/j.progpolymsci.2017.12.003

    Article  CAS  Google Scholar 

  10. Wang, X.F., Ding, B., Sun, G., et al.: Electro-spinning/netting: a strategy for the fabrication of three-dimensional polymer nano-fiber/nets. Prog. Mater. Sci. 58, 1173–1243 (2013). https://doi.org/10.1016/j.pmatsci.2013.05.001

    Article  CAS  Google Scholar 

  11. Zhang, Z.M., Duan, Y.S., Xu, Q., et al.: A review on nanofiber fabrication with the effect of high-speed centrifugal force field. J. Eng. Fibers Fabr. 14, 155892501986751 (2019). https://doi.org/10.1177/1558925019867517

    Article  Google Scholar 

  12. Thenmozhi, S., Dharmaraj, N., Kadirvelu, K., et al.: Electrospun nanofibers: new generation materials for advanced applications. Mater. Sci. Eng. B 217, 36–48 (2017). https://doi.org/10.1016/j.mseb.2017.01.001

  13. Xing, X.B., Yu, H.Q., Zhu, D.B., et al.: Subwavelength and nanometer diameter optical polymer fibers as building blocks for miniaturized photonics integration. In: Xing, X.B.(ed.): Optical Communication, pp.289–320. InTechOpen (2012) https://doi.org/10.5772/47822

  14. Huang, Z.M., Zhang, Y.Z., Kotaki, M., et al.: A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63, 2223–2253 (2003). https://doi.org/10.1016/S0266-3538(03)00178-7

    Article  CAS  Google Scholar 

  15. Teo, W.E., Ramakrishna, S.: A review on electrospinning design and nanofibre assemblies. Nanotechnology 17, R89–R106 (2006). https://doi.org/10.1088/0957-4484/17/14/R01

    Article  CAS  Google Scholar 

  16. Lallave, M., Bedia, J., Ruiz-Rosas, R., et al.: Filled and hollow carbon nanofibers by coaxial electrospinning of Alcell lignin without binder polymers. Adv. Mater. 19, 4292–4296 (2007). https://doi.org/10.1002/adma.200700963

    Article  CAS  Google Scholar 

  17. Bhardwaj, N., Kundu, S.C.: Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 28, 325–347 (2010). https://doi.org/10.1016/j.biotechadv.2010.01.004

    Article  CAS  Google Scholar 

  18. Persano, L., Camposeo, A., Tekmen, C., et al.: Industrial upscaling of electrospinning and applications of polymer nanofibers: a review. Macromol. Mater. Eng. 298, 504–520 (2013). https://doi.org/10.1002/mame.201200290

    Article  CAS  Google Scholar 

  19. Peng, S.J., Li, L.L., Kong Yoong Lee, J., et al.: Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage. Nano Energy 22, 361–395 (2016). https://doi.org/10.1016/j.nanoen.2016.02.001

  20. Li, X.Y., Chen, Y.M., Huang, H.T., et al.: Electrospun carbon-based nanostructured electrodes for advanced energy storage: a review. Energy Storage Mater. 5, 58–92 (2016). https://doi.org/10.1016/j.ensm.2016.06.002

    Article  CAS  Google Scholar 

  21. Inagaki, M., Yang, Y., Kang, F.Y.: Carbon nanofibers prepared via electrospinning. Adv. Mater. 24, 2547–2566 (2012). https://doi.org/10.1002/adma.201104940

    Article  CAS  Google Scholar 

  22. Zhang, B., Kang, F.Y., Tarascon, J.M., et al.: Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Prog. Mater. Sci. 76, 319–380 (2016). https://doi.org/10.1016/j.pmatsci.2015.08.002

    Article  CAS  Google Scholar 

  23. Kim, C., Yang, K., Kojima, M., et al.: Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries. Adv. Funct. Mater. 16, 2393–2397 (2006). https://doi.org/10.1002/adfm.200500911

    Article  CAS  Google Scholar 

  24. Li, W.H., Li, M.S., Adair, K.R., et al.: Carbon nanofiber-based nanostructures for lithium-ion and sodium-ion batteries. J. Mater. Chem. A 5, 13882–13906 (2017). https://doi.org/10.1039/c7ta02153d

    Article  CAS  Google Scholar 

  25. Dong, Z.X., Kennedy, S.J., Wu, Y.Q.: Electrospinning materials for energy-related applications and devices. J. Power Sources 196, 4886–4904 (2011). https://doi.org/10.1016/j.jpowsour.2011.01.090

    Article  CAS  Google Scholar 

  26. Cavaliere, S., Subianto, S., Savych, I., et al.: Electrospinning: designed architectures for energy conversion and storage devices. Energy Environ. Sci. 4, 4761 (2011). https://doi.org/10.1039/c1ee02201f

    Article  CAS  Google Scholar 

  27. Lu, X.F., Wang, C., Favier, F., et al.: Electrospun nanomaterials for supercapacitor electrodes: designed architectures and electrochemical performance. Adv. Energy Mater. 7, 1601301 (2017). https://doi.org/10.1002/aenm.201601301

    Article  CAS  Google Scholar 

  28. Jung, J.W., Lee, C.L., Yu, S., et al.: Electrospun nanofibers as a platform for advanced secondary batteries: a comprehensive review. J. Mater. Chem. A 4, 703–750 (2016). https://doi.org/10.1039/c5ta06844d

    Article  CAS  Google Scholar 

  29. Lv, F., Wang, Z.Y., Shi, L.Y., et al.: Challenges and development of composite solid-state electrolytes for high-performance lithium ion batteries. J. Power Sources 441, 227175 (2019). https://doi.org/10.1016/j.jpowsour.2019.227175

    Article  CAS  Google Scholar 

  30. Xia, S.X., Wu, X.S., Zhang, Z.C., et al.: Practical challenges and future perspectives of all-solid-state lithium-metal batteries. Chem 5, 753–785 (2019). https://doi.org/10.1016/j.chempr.2018.11.013

    Article  CAS  Google Scholar 

  31. Lopez, J., Mackanic, D.G., Cui, Y., et al.: Designing polymers for advanced battery chemistries. Nat. Rev. Mater. 4, 312–330 (2019). https://doi.org/10.1038/s41578-019-0103-6

    Article  CAS  Google Scholar 

  32. Zhou, Q., Ma, J., Dong, S.M., et al.: Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv. Mater. 31, 1902029 (2019). https://doi.org/10.1002/adma.201902029

    Article  CAS  Google Scholar 

  33. Li, S., Zhang, S.Q., Shen, L., et al.: Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Adv. Sci. 7, 1903088 (2020). https://doi.org/10.1002/advs.201903088

    Article  CAS  Google Scholar 

  34. Balazs, A.C., Emrick, T., Russell, T.P.: Nanoparticle polymer composites: where two small worlds meet. Science 314, 1107–1110 (2006). https://doi.org/10.1126/science.1130557

    Article  CAS  Google Scholar 

  35. Liu, W., Lee, S.W., Lin, D.C., et al.: Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat. Energy 2, 17035 (2017). https://doi.org/10.1038/nenergy.2017.35

    Article  CAS  Google Scholar 

  36. Zhu, P., Yan, C.Y., Zhu, J.D., et al.: Flexible electrolyte-cathode bilayer framework with stabilized interface for room-temperature all-solid-state lithium-sulfur batteries. Energy Storage Mater. 17, 220–225 (2019). https://doi.org/10.1016/j.ensm.2018.11.009

    Article  Google Scholar 

  37. Xue, J., Wu, T., Dai, Y., et al.: Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem. Rev. 119, 5298–5415 (2019). https://doi.org/10.1021/acs.chemrev.8b00593

    Article  CAS  Google Scholar 

  38. Sill, T.J., von Recum, H.A.: Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29, 1989–2006 (2008). https://doi.org/10.1016/j.biomaterials.2008.01.011

    Article  CAS  Google Scholar 

  39. Doshi, J., Reneker, D.H.: Electrospinning process and applications of electrospun fibers. J. Electrost. 35, 151–160 (1995). https://doi.org/10.1016/0304-3886(95)00041-8

    Article  CAS  Google Scholar 

  40. Agarwal, S., Wendorff, J.H., Greiner, A.: Progress in the field of electrospinning for tissue engineering applications. Adv. Mater. 21, 3343–3351 (2009). https://doi.org/10.1002/adma.200803092

    Article  CAS  Google Scholar 

  41. Li, Q., Hu, C., Clarke, H., et al.: Microstructure defines the electroconductive and mechanical performance of plant-derived renewable carbon fiber. Chem. Commun. 55, 12655–12658 (2019). https://doi.org/10.1039/c9cc05016g

    Article  CAS  Google Scholar 

  42. Zhang, X.W., Ji, L.W., Toprakci, O., et al.: Electrospun nanofiber-based anodes, cathodes, and separators for advanced lithium-ion batteries. Polym. Rev. 51, 239–264 (2011). https://doi.org/10.1080/15583724.2011.593390

    Article  CAS  Google Scholar 

  43. Hwang, T.H., Lee, Y.M., Kong, B.S., et al.: Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett. 12, 802–807 (2012). https://doi.org/10.1021/nl203817r

    Article  CAS  Google Scholar 

  44. Li, Q., Serem, W.K., Dai, W., et al.: Molecular weight and uniformity define the mechanical performance of lignin-based carbon fiber. J. Mater. Chem. A 5, 12740–12746 (2017). https://doi.org/10.1039/c7ta01187c

    Article  CAS  Google Scholar 

  45. Raghavan, P., Lim, D.H., Ahn, J.H., et al.: Electrospun polymer nanofibers: the booming cutting edge technology. React. Funct. Polym. 72, 915–930 (2012). https://doi.org/10.1016/j.reactfunctpolym.2012.08.018

    Article  CAS  Google Scholar 

  46. Li, Q., Xie, S.X., Wilson, K.: Quality carbon fibers from fractionated lignin. Green Chem. 19, 1628–1634 (2017). https://doi.org/10.1039/c6gc03555h

    Article  CAS  Google Scholar 

  47. Theron, S.A., Zussman, E., Yarin, A.L.: Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 45, 2017–2030 (2004). https://doi.org/10.1016/j.polymer.2004.01.024

    Article  CAS  Google Scholar 

  48. Li, Q., Naik, M.T., Lin, H.S., et al.: Tuning hydroxyl groups for quality carbon fiber of lignin. Carbon 139, 500–511 (2018). https://doi.org/10.1016/j.carbon.2018.07.015

    Article  CAS  Google Scholar 

  49. Xu, C.Y., Inai, R., Kotaki, M., et al.: Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials 25, 877–886 (2004). https://doi.org/10.1016/S0142-9612(03)00593-3

    Article  CAS  Google Scholar 

  50. Murugan, R., Ramakrishna, S.: Design strategies of tissue engineering scaffolds with controlled fiber orientation. Tissue Eng. 13, 1845–1866 (2007). https://doi.org/10.1089/ten.2006.0078

    Article  CAS  Google Scholar 

  51. Hohman, M.M., Shin, M., Rutledge, G., et al.: Electrospinning and electrically forced jets. I. Stability theory. Phys. Fluids 13, 2201–2220 (2001). https://doi.org/10.1063/1.1383791

    Article  CAS  Google Scholar 

  52. Theron, A., Zussman, E., Yarin, A.L.: Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechnology 12, 384–390 (2001). https://doi.org/10.1088/0957-4484/12/3/329

    Article  Google Scholar 

  53. Chawla, S., Cai, J.Z., Naraghi, M.: Mechanical tests on individual carbon nanofibers reveals the strong effect of graphitic alignment achieved via precursor hot-drawing. Carbon 117, 208–219 (2017). https://doi.org/10.1016/j.carbon.2017.02.095

    Article  CAS  Google Scholar 

  54. Naraghi, M., Arshad, S.N., Chasiotis, I.: Molecular orientation and mechanical property size effects in electrospun polyacrylonitrile nanofibers. Polymer 52, 1612–1618 (2011). https://doi.org/10.1016/j.polymer.2011.02.013

    Article  CAS  Google Scholar 

  55. Xie, J., Macewan, M.R., Ray, W.Z., et al.: Radially aligned, electrospun nanofibers as dural substitutes for wound closure and tissue regeneration applications. ACS Nano 4, 5027–5036 (2010). https://doi.org/10.1021/nn101554u

    Article  CAS  Google Scholar 

  56. Kessick, R., Fenn, J., Tepper, G.: The use of AC potentials in electrospraying and electrospinning processes. Polymer 45, 2981–2984 (2004). https://doi.org/10.1016/j.polymer.2004.02.056

    Article  CAS  Google Scholar 

  57. Li, L.L., Peng, S.J., Lee, J.K.Y., et al.: Electrospun hollow nanofibers for advanced secondary batteries. Nano Energy 39, 111–139 (2017). https://doi.org/10.1016/j.nanoen.2017.06.050

    Article  CAS  Google Scholar 

  58. Mao, X.W., Hatton, T., Rutledge, G.: A review of electrospun carbon fibers as electrode materials for energy storage. Curr. Org. Chem. 17, 1390–1401 (2013). https://doi.org/10.2174/1385272811317130006

    Article  CAS  Google Scholar 

  59. Hedayati, R., Sadighi, M., Mohammadi-Aghdam, M., et al.: Mechanical properties of regular porous biomaterials made from truncated cube repeating unit cells: analytical solutions and computational models. Mater. Sci. Eng. C 60, 163–183 (2016). https://doi.org/10.1016/j.msec.2015.11.001

  60. Kim, B.H., Yang, K.S., Kim, Y.A., et al.: Solvent-induced porosity control of carbon nanofiber webs for supercapacitor. J. Power Sources 196, 10496–10501 (2011). https://doi.org/10.1016/j.jpowsour.2011.08.088

    Article  CAS  Google Scholar 

  61. Yu, Y., Gu, L., Zhu, C.B., et al.: Tin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries. J. Am. Chem. Soc. 131, 15984–15985 (2009). https://doi.org/10.1021/ja906261c

    Article  CAS  Google Scholar 

  62. Yu, J.M., Wang, C., Li, S.H., et al.: Li+-containing, continuous silica nanofibers for high Li+ conductivity in composite polymer electrolyte. Small 15, 1902729 (2019). https://doi.org/10.1002/smll.201902729

    Article  CAS  Google Scholar 

  63. Chen, H.Y., Di, J.C., Wang, N., et al.: Fabrication of hierarchically porous inorganic nanofibers by a general microemulsion electrospinning approach. Small 7, 1779–1783 (2011). https://doi.org/10.1002/smll.201002376

    Article  CAS  Google Scholar 

  64. Moon, S., Choi, J., Farris, R.J.: Highly porous polyacrylonitrile/polystyrene nanofibers by electrospinning. Fibers Polym. 9, 276–280 (2008). https://doi.org/10.1007/s12221-008-0044-y

    Article  CAS  Google Scholar 

  65. Li, Z., Zhang, J.T., Chen, Y.M., et al.: Pie-like electrode design for high-energy density lithium–sulfur batteries. Nat. Commun. 6, 8850 (2015). https://doi.org/10.1038/ncomms9850

    Article  CAS  Google Scholar 

  66. Kim, C., Ngoc, B. . ., Yang, K. ., et al.: Self-sustained thin webs consisting of porous carbon nanofibers for supercapacitors via the electrospinning of polyacrylonitrile solutions containing zinc chloride. Adv. Mater. 19, 2341–2346 (2007). https://doi.org/10.1002/adma.200602184

  67. Li, J., Liu, E.H., Li, W., et al.: Nickel/carbon nanofibers composite electrodes as supercapacitors prepared by electrospinning. J. Alloy. Compd. 478, 371–374 (2009). https://doi.org/10.1016/j.jallcom.2008.11.024

    Article  CAS  Google Scholar 

  68. Im, J.S., Woo, S.W., Jung, M.J., et al.: Improved capacitance characteristics of electrospun ACFs by pore size control and vanadium catalyst. J. Colloid Interface Sci. 327, 115–119 (2008). https://doi.org/10.1016/j.jcis.2008.08.030

    Article  CAS  Google Scholar 

  69. Kim, B.H., Yang, K.S., Woo, H.G.: Thin, bendable electrodes consisting of porous carbon nanofibers via the electrospinning of polyacrylonitrile containing tetraethoxy orthosilicate for supercapacitor. Electrochem. Commun. 13, 1042–1046 (2011). https://doi.org/10.1016/j.elecom.2011.06.024

    Article  CAS  Google Scholar 

  70. Zhang, L.F., Aboagye, A., Kelkar, A., et al.: A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. J. Mater. Sci. 49, 463–480 (2014). https://doi.org/10.1007/s10853-013-7705-y

    Article  CAS  Google Scholar 

  71. Ghasemi, M., Shahgaldi, S., Ismail, M., et al.: Activated carbon nanofibers as an alternative cathode catalyst to platinum in a two-chamber microbial fuel cell. Int. J. Hydrog. Energy 36, 13746–13752 (2011). https://doi.org/10.1016/j.ijhydene.2011.07.118

    Article  CAS  Google Scholar 

  72. Wang, G., Dong, Q., Ling, Z., et al.: Hierarchical activated carbon nanofiber webs with tuned structure fabricated by electrospinning for capacitive deionization. J. Mater. Chem. 22, 21819 (2012). https://doi.org/10.1039/c2jm34890j

    Article  CAS  Google Scholar 

  73. Lee, K.J., Shiratori, N., Lee, G.H., et al.: Activated carbon nanofiber produced from electrospun polyacrylonitrile nanofiber as a highly efficient formaldehyde adsorbent. Carbon 48, 4248–4255 (2010). https://doi.org/10.1016/j.carbon.2010.07.034

    Article  CAS  Google Scholar 

  74. Kim, C., Yang, K.S.: Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning. Appl. Phys. Lett. 83, 1216–1218 (2003). https://doi.org/10.1063/1.1599963

    Article  CAS  Google Scholar 

  75. You, X.Y., Misra, M., Gregori, S., et al.: Preparation of an electric double layer capacitor (EDLC) using miscanthus-derived biocarbon. ACS Sustainable Chem. Eng. 6, 318–324 (2018). https://doi.org/10.1021/acssuschemeng.7b02563

    Article  CAS  Google Scholar 

  76. You, X.Y., Koda, K., Yamada, T., et al.: Preparation of high-performance internal tandem electric double-layer capacitors (IT-EDLCs) from melt-spun lignin fibers. J. Wood Chem. Technol. 36, 418–431 (2016). https://doi.org/10.1080/02773813.2016.1212893

    Article  CAS  Google Scholar 

  77. Chen, Y.J., Amiri, A., Boyd, J.G., et al.: Promising trade-offs between energy storage and load bearing in carbon nanofibers as structural energy storage devices. Adv. Funct. Mater. 29, 1901425 (2019). https://doi.org/10.1002/adfm.201901425

    Article  CAS  Google Scholar 

  78. Zhou, Z.P., Liu, G.L.: Controlling the pore size of mesoporous carbon thin films through thermal and solvent annealing. Small 13, 1603107 (2017). https://doi.org/10.1002/smll.201603107

    Article  CAS  Google Scholar 

  79. Zhou, Z.P., Liu, T., Khan, A.U., et al.: Block copolymer–based porous carbon fibers. Sci. Adv. 5, eaau6852–eaau6860 (2019). https://doi.org/10.1126/sciadv.aau6852

  80. Liu, T., Zhou, Z., Guo, Y., et al.: Block copolymer derived uniform mesopores enable ultrafast electron and ion transport at high mass loadings. Nat. Commun. 10, 675–684 (2019). https://doi.org/10.1038/s41467-019-08644-w

    Article  CAS  Google Scholar 

  81. Liu, T., Liu, G.L.: Block copolymers for supercapacitors, dielectric capacitors and batteries. J. Phys.: Condens. Matter 31, 233001 (2019). https://doi.org/10.1088/1361-648x/ab0d77

  82. Yu, D.G., Wang, M.L., Li, X.Y., et al.: Multifluid electrospinning for the generation of complex nanostructures. Wiley Interdiscip. Rev.-Nanomed. Nanobiotechnol.12, e1601 (2020). https://doi.org/10.1002/wnan.1601

  83. Sun, Z., Zussman, E., Yarin, A.L., et al.: Compound core–shell polymer nanofibers by Co-electrospinning. Adv. Mater. 15, 1929–1932 (2003). https://doi.org/10.1002/adma.200305136

    Article  CAS  Google Scholar 

  84. Dror, Y., Salalha, W., Avrahami, R., et al.: One-step production of polymeric microtubes by Co-electrospinning. Small 3, 1064–1073 (2007). https://doi.org/10.1002/smll.200600536

    Article  CAS  Google Scholar 

  85. Tuncel, D., Matthews, J., Anderson, H.: Synthesis of nanowalled polymer microtubes using glass fiber templates. Adv. Funct. Mater. 14, 851–855 (2004). https://doi.org/10.1002/adfm.200305201

    Article  CAS  Google Scholar 

  86. Kim, S.W., Kim, M., Lee, W.Y., et al.: Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions. J. Am. Chem. Soc. 124, 7642–7643 (2002). https://doi.org/10.1021/ja026032z

    Article  CAS  Google Scholar 

  87. Wen, X.J., Tresco, P.A.: Fabrication and characterization of permeable degradable poly(dl-lactide-co-glycolide) (PLGA) hollow fiber phase inversion membranes for use as nerve tract guidance channels. Biomaterials 27, 3800–3809 (2006). https://doi.org/10.1016/j.biomaterials.2006.02.036

    Article  CAS  Google Scholar 

  88. Li, D., Xia, Y.N.: Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett. 4, 933–938 (2004). https://doi.org/10.1021/nl049590f

    Article  CAS  Google Scholar 

  89. McCann, J.T., Li, D., Xia, Y.N.: Electrospinning of nanofibers with core-sheath, hollow, or porous structures. J. Mater. Chem. 15, 735 (2005). https://doi.org/10.1039/b415094e

    Article  CAS  Google Scholar 

  90. Loscertales, I.G., Barrero, A., Márquez, M., et al.: Electrically forced coaxial nanojets for one-step hollow nanofiber design. J. Am. Chem. Soc. 126, 5376–5377 (2004). https://doi.org/10.1021/ja049443j

    Article  CAS  Google Scholar 

  91. Liu, X.K., Yang, Y.Y., Yu, D.G., et al.: Tunable zero-order drug delivery systems created by modified triaxial electrospinning. Chem. Eng. J. 356, 886–894 (2019). https://doi.org/10.1016/j.cej.2018.09.096

    Article  CAS  Google Scholar 

  92. Yang, C., Yu, D.G., Pan, D., et al.: Electrospun pH-sensitive core–shell polymer nanocomposites fabricated using a tri-axial process. Acta Biomater. 35, 77–86 (2016). https://doi.org/10.1016/j.actbio.2016.02.029

    Article  CAS  Google Scholar 

  93. Chen, H., Wang, N., Di, J., et al.: Nanowire-in-microtube structured core/shell fibers via multifluidic coaxial electrospinning. Langmuir 26, 11291–11296 (2010). https://doi.org/10.1021/la100611f

    Article  CAS  Google Scholar 

  94. Yang, H.F., Lightner, C.R., Dong, L.: Light-emitting coaxial nanofibers. ACS Nano 6, 622–628 (2012). https://doi.org/10.1021/nn204055t

    Article  CAS  Google Scholar 

  95. Moghe, A.K., Gupta, B.S.: Co-axial electrospinning for nanofiber structures: preparation and applications. Polym. Rev. 48, 353–377 (2008). https://doi.org/10.1080/15583720802022257

    Article  CAS  Google Scholar 

  96. Qu, H.L., Wei, S.Y., Guo, Z.H.: Coaxial electrospun nanostructures and their applications. J. Mater. Chem. A 1, 11513 (2013). https://doi.org/10.1039/c3ta12390a

    Article  CAS  Google Scholar 

  97. Yu, Y., Gu, L., Wang, C.L., et al.: Encapsulation of sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries. Angew. Chem. Int. Edit. 121, 6607–6611 (2009). https://doi.org/10.1002/ange.200901723

    Article  Google Scholar 

  98. Park, G.D., Kang, Y.C.: Enhanced Li-ion storage performance of novel tube-in-tube structured nanofibers with hollow metal oxide nanospheres covered with a graphitic carbon layer. Nanoscale 12, 8404–8414 (2020). https://doi.org/10.1039/d0nr00592d

    Article  CAS  Google Scholar 

  99. Gao, S.W., Wang, N., Li, S., et al.: A multi-wall Sn/SnO2@carbon hollow nanofiber anode material for high-rate and long-life lithium-ion batteries. Angew. Chem. Int. Edit. 59, 2465–2472 (2020). https://doi.org/10.1002/anie.201913170

    Article  CAS  Google Scholar 

  100. Nam, D.H., Kim, J.W., Lee, J.H., et al.: Tunable Sn structures in porosity-controlled carbon nanofibers for all-solid-state lithium-ion battery anodes. J. Mater. Chem. A 3, 11021–11030 (2015). https://doi.org/10.1039/c5ta00884k

    Article  CAS  Google Scholar 

  101. Zhao, Y., Cao, X.Y., Jiang, L.: Bio-mimic multichannel microtubes by a facile method. J. Am. Chem. Soc. 129, 764–765 (2007). https://doi.org/10.1021/ja068165g

    Article  CAS  Google Scholar 

  102. Zhao, Y., Jiang, L.: Hollow micro/nanomaterials with multilevel interior structures. Adv. Mater. 21, 3621–3638 (2009). https://doi.org/10.1002/adma.200803645

    Article  CAS  Google Scholar 

  103. Mai, Y.Y., Eisenberg, A.: Self-assembly of block copolymers. Chem. Soc. Rev. 41, 5969–5985 (2012). https://doi.org/10.1039/c2cs35115c

    Article  CAS  Google Scholar 

  104. Ma, M.L., Krikorian, V., Yu, J.H., et al.: Electrospun polymer nanofibers with internal periodic structure obtained by microphase separation of cylindrically confined block copolymers. Nano Lett. 6, 2969–2972 (2006). https://doi.org/10.1021/nl062311z

    Article  CAS  Google Scholar 

  105. Ma, M.L., Titievsky, K., Thomas, E.L., et al.: Continuous concentric lamellar block copolymer nanofibers with long range order. Nano Lett. 9, 1678–1683 (2009). https://doi.org/10.1021/nl900265y

    Article  CAS  Google Scholar 

  106. Schacher, F.H., Rupar, P.A., Manners, I.: Functional block copolymers: nanostructured materials with emerging applications. Angew. Chem. Int. Edit. 51, 7898–7921 (2012). https://doi.org/10.1002/anie.201200310

    Article  CAS  Google Scholar 

  107. Blanazs, A., Armes, S.P., Ryan, A.J.: Self-assembled block copolymer aggregates: from micelles to vesicles and their biological applications. Macromol. Rapid Commun. 30, 267–277 (2009). https://doi.org/10.1002/marc.200800713

    Article  CAS  Google Scholar 

  108. Niu, H.T., Zhang, J., Xie, Z.L., et al.: Preparation, structure and supercapacitance of bonded carbon nanofiber electrode materials. Carbon 49, 2380–2388 (2011). https://doi.org/10.1016/j.carbon.2011.02.005

    Article  CAS  Google Scholar 

  109. Wu, H., Hu, L., Rowell, M.W., et al.: Electrospun metal nanofiber webs as high-performance transparent electrode. Nano Lett. 10, 4242–4248 (2010). https://doi.org/10.1021/nl102725k

    Article  CAS  Google Scholar 

  110. Dallmeyer, J.L.: Preparation and characterization of lignin nanofibre-based materials obtained by electrostatic spinning. Doctoral dissertation, University of British Columbia (2013)

  111. Schlee, P., Hosseinaei, O., Baker, D., et al.: From waste to wealth: from kraft lignin to free-standing supercapacitors. Carbon 145, 470–480 (2019). https://doi.org/10.1016/j.carbon.2019.01.035

    Article  CAS  Google Scholar 

  112. Roman, J., Neri, W., Derré, A., et al.: Electrospun lignin-based twisted carbon nanofibers for potential microelectrodes applications. Carbon 145, 556–564 (2019). https://doi.org/10.1016/j.carbon.2019.01.036

    Article  CAS  Google Scholar 

  113. Tenhaeff, W.E., Rios, O., More, K., et al.: Highly robust lithium ion battery anodes from lignin: an abundant, renewable, and low-cost material. Adv. Funct. Mater. 24, 86–94 (2014). https://doi.org/10.1002/adfm.201301420

    Article  CAS  Google Scholar 

  114. Milczarek, G., Inganäs, O.: Renewable cathode materials from biopolymer/conjugated polymer interpenetrating networks. Science 335, 1468–1471 (2012). https://doi.org/10.1126/science.1215159

    Article  CAS  Google Scholar 

  115. Peng, Z.Y., Zou, Y.B., Xu, S.Q., et al.: High-performance biomass-based flexible solid-state supercapacitor constructed of pressure-sensitive lignin-based and cellulose hydrogels. ACS Appl. Mater. Interfaces 10, 22190–22200 (2018). https://doi.org/10.1021/acsami.8b05171

    Article  CAS  Google Scholar 

  116. Wang, S.X., Yang, L.P., Stubbs, L.P., et al.: Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for lithium ion batteries. ACS Appl. Mater. Interfaces 5, 12275–12282 (2013). https://doi.org/10.1021/am4043867

    Article  CAS  Google Scholar 

  117. Wang, X.E., Kerr, R., Chen, F.F., et al.: Toward high-energy-density lithium metal batteries: opportunities and challenges for solid organic electrolytes. Adv. Mater. 32, 1905219 (2020). https://doi.org/10.1002/adma.201905219

    Article  CAS  Google Scholar 

  118. Kim, D.H.: Thin and flexible solid electrolyte membranes with ultrahigh thermal stability derived from solution-processable Li argyrodites for all-solid-state Li-ion batteries. ACS Energy Lett. 5, 718–727 (2020)

    Article  CAS  Google Scholar 

  119. Hu, J.K., He, P.G., Zhang, B.C., et al.: Porous film host-derived 3D composite polymer electrolyte for high-voltage solid state lithium batteries. Energy Storage Mater. 26, 283–289 (2020). https://doi.org/10.1016/j.ensm.2020.01.006

    Article  Google Scholar 

  120. Wang, X.E., Girard, G.M.A., Zhu, H.J., et al.: Poly(ionic liquid)s/electrospun nanofiber composite polymer electrolytes for high energy density and safe Li metal batteries. ACS Appl. Energy Mater. 2, 6237–6245 (2019). https://doi.org/10.1021/acsaem.9b00765

    Article  CAS  Google Scholar 

  121. Zhou, Y.D., Wang, X.E., Zhu, H.J., et al.: Solid-state lithium conductors for lithium metal batteries based on electrospun nanofiber/plastic crystal composites. Chemsuschem 10, 3135–3145 (2017). https://doi.org/10.1002/cssc.201700691

    Article  CAS  Google Scholar 

  122. Watanabe, T., Inafune, Y., Tanaka, M., et al.: Development of all-solid-state battery based on lithium ion conductive polymer nanofiber framework. J. Power Sources 423, 255–262 (2019). https://doi.org/10.1016/j.jpowsour.2019.03.066

    Article  CAS  Google Scholar 

  123. Wang, C.S., Zhang, X.W., Appleby, A.J.: Solvent-free composite PEO-ceramic fiber/mat electrolytes for lithium secondary cells. J. Electrochem. Soc. 152, A205 (2005). https://doi.org/10.1149/1.1828952

    Article  CAS  Google Scholar 

  124. Liu, W., Liu, N., Sun, J., et al.: Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett. 15, 2740–2745 (2015). https://doi.org/10.1021/acs.nanolett.5b00600

    Article  CAS  Google Scholar 

  125. Li, B.Y., Su, Q.M., Yu, L.T., et al.: Li0.35La0.55TiO3 nanofibers enhanced poly(vinylidene fluoride)-based composite polymer electrolytes for all-solid-state batteries. ACS Appl. Mater. Interfaces 11, 42206–42213 (2019). https://doi.org/10.1021/acsami.9b14824

  126. Li, Y., Zhang, W., Dou, Q.Q., et al.: Li7La3Zr2O12 ceramic nanofiber-incorporated composite polymer electrolytes for lithium metal batteries. J. Mater. Chem. A 7, 3391–3398 (2019). https://doi.org/10.1039/c8ta11449h

    Article  CAS  Google Scholar 

  127. Fu, K.K., Gong, Y., Dai, J., et al.: Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl. Acad. Sci. U. S. A. 113, 7094–7099 (2016). https://doi.org/10.1073/pnas.1600422113

    Article  CAS  Google Scholar 

  128. Zhu, P., Yan, C.Y., Dirican, M., et al.: Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries. J. Mater. Chem. A 6, 4279–4285 (2018). https://doi.org/10.1039/c7ta10517g

  129. Yu, L., Canfield, N.L., Chen, S.R., et al.: Enhanced stability of lithium metal anode by using a 3D porous nickel substrate. ChemElectroChem 5, 761–769 (2018). https://doi.org/10.1002/celc.201701250

    Article  CAS  Google Scholar 

  130. Wang, X.Z., Zhang, Y.B., Zhang, X., et al.: Lithium-salt-rich PEO/Li0.3La0.557TiO3 interpenetrating composite electrolyte with three-dimensional ceramic nano-backbone for all-solid-state lithium-ion batteries. ACS Appl. Mater. Interfaces 10, 24791–24798 (2018). https://doi.org/10.1021/acsami.8b06658

  131. Liu, K., Zhang, R.H., Sun, J., et al.: Polyoxyethylene (PEO)|PEO-Perovskite|PEO composite electrolyte for all-solid-state lithium metal batteries. ACS Appl. Mater. Interfaces 11, 46930–46937 (2019). https://doi.org/10.1021/acsami.9b16936

    Article  CAS  Google Scholar 

  132. Yan, C.Y., Zhu, P., Jia, H., et al.: Garnet-rich composite solid electrolytes for dendrite-free, high-rate, solid-state lithium-metal batteries. Energy Storage Mater. 26, 448–456 (2020). https://doi.org/10.1016/j.ensm.2019.11.018

    Article  Google Scholar 

  133. Yang, H., Bright, J., Chen, B.H., et al.: Chemical interaction and enhanced interfacial ion transport in a ceramic nanofiber-polymer composite electrolyte for all-solid-state lithium metal batteries. J. Mater. Chem. A 8, 7261–7272 (2020). https://doi.org/10.1039/c9ta12495k

    Article  CAS  Google Scholar 

  134. Zhao, Y., Yan, J.H., Cai, W.P., et al.: Elastic and well-aligned ceramic LLZO nanofiber-based electrolytes for solid-state lithium batteries. Energy Storage Mater. 23, 306–313 (2019). https://doi.org/10.1016/j.ensm.2019.04.043

    Article  Google Scholar 

  135. Wu, Q.Y., Chen, X.N., Wan, L.S., et al.: Interactions between polyacrylonitrile and solvents: density functional theory study and two-dimensional infrared correlation analysis. J. Phys. Chem. B 116, 8321–8330 (2012). https://doi.org/10.1021/jp304167f

    Article  CAS  Google Scholar 

  136. Foran, G., Mankovsky, D., Verdier, N., et al.: The impact of absorbed solvent on the performance of solid polymer electrolytes for use in solid-state lithium batteries. iScience 23, 101597 (2020). https://doi.org/10.1016/j.isci.2020.101597

  137. Huttner, F., Haselrieder, W., Kwade, A.: The influence of different post-drying procedures on remaining water content and physical and electrochemical properties of lithium-ion batteries. Energy Technol. 8, 1900245 (2020). https://doi.org/10.1002/ente.201900245

    Article  CAS  Google Scholar 

  138. Fu, L.J., Zhang, H.P., Wu, Y.P., et al.: Surface active sites: an important factor affecting the sensitivity of carbon anode material toward humidity. Electrochem. Solid-State Lett. 8, A456 (2005). https://doi.org/10.1149/1.1990047

    Article  CAS  Google Scholar 

  139. Rupich, M.W., Pitts, L., Abraham, K.M.: Characterization of reactions and products of the discharge and forced overdischarge of Li/SO2 cells. J. Electrochem. Soc. 129, 1857–1861 (1982). https://doi.org/10.1149/1.2124314

    Article  CAS  Google Scholar 

  140. Li, J.L., Daniel, C., An, S.J., et al.: Evaluation residual moisture in lithium-ion battery electrodes and its effect on electrode performance. MRS Adv. 1, 1029–1035 (2016). https://doi.org/10.1557/adv.2016.6

    Article  CAS  Google Scholar 

  141. Stich, M., Pandey, N., Bund, A.: Drying and moisture resorption behaviour of various electrode materials and separators for lithium-ion batteries. J. Power Sources 364, 84–91 (2017). https://doi.org/10.1016/j.jpowsour.2017.08.009

    Article  CAS  Google Scholar 

  142. Fenton, D.E., Parker, J.M., Wright, P.V.: Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14, 589 (1973). https://doi.org/10.1016/0032-3861(73)90146-8

    Article  CAS  Google Scholar 

  143. Savoie, B.M., Webb, M.A., Miller, T.F., III.: Enhancing cation diffusion and suppressing anion diffusion via lewis-acidic polymer electrolytes. J. Phys. Chem. Lett. 8, 641–646 (2017). https://doi.org/10.1021/acs.jpclett.6b02662

    Article  CAS  Google Scholar 

  144. Sun, J., Stone, G.M., Balsara, N.P., et al.: Structure–conductivity relationship for peptoid-based PEO–mimetic polymer electrolytes. Macromolecules 45, 5151–5156 (2012). https://doi.org/10.1021/ma300775b

    Article  CAS  Google Scholar 

  145. Nishimoto, A., Agehara, K., Furuya, N., et al.: High ionic conductivity of polyether-based network polymer electrolytes with hyperbranched side chains. Macromolecules 32, 1541–1548 (1999). https://doi.org/10.1021/ma981436q

    Article  CAS  Google Scholar 

  146. Hawker, C.J., Chu, F.K., Pomery, P.J., et al.: Hyperbranched Poly(ethylene glycol)s: a new class of ion-conducting materials. Macromolecules 29, 3831–3838 (1996). https://doi.org/10.1021/ma951909i

    Article  CAS  Google Scholar 

  147. Stone, G.M., Mullin, S.A., Teran, A.A., et al.: Resolution of the modulus versus adhesion dilemma in solid polymer electrolytes for rechargeable lithium metal batteries. J. Electrochem. Soc. 159, A222–A227 (2012). https://doi.org/10.1149/2.030203jes

    Article  CAS  Google Scholar 

  148. Young, N.P., Devaux, D., Khurana, R., et al.: Investigating polypropylene-poly(ethylene oxide)-polypropylene triblock copolymers as solid polymer electrolytes for lithium batteries. Solid State Ionics 263, 87–94 (2014). https://doi.org/10.1016/j.ssi.2014.05.012

    Article  CAS  Google Scholar 

  149. Bouchet, R., Phan, T.N.T., Beaudoin, E., et al.: Charge transport in nanostructured PS-PEO-PS triblock copolymer electrolytes. Macromolecules 47, 2659–2665 (2014). https://doi.org/10.1021/ma500420w

    Article  CAS  Google Scholar 

  150. Bates, C.M., Chang, A.B., Momčilović, N., et al.: ABA triblock brush polymers: synthesis, self-assembly, conductivity, and rheological properties. Macromolecules 48, 4967–4973 (2015). https://doi.org/10.1021/acs.macromol.5b00880

    Article  CAS  Google Scholar 

  151. Bouchet, R., Maria, S., Meziane, R., et al.: Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452–457 (2013). https://doi.org/10.1038/nmat3602

    Article  CAS  Google Scholar 

  152. Lin, Z.Y., Guo, X.W., Yang, Y.B., et al.: Block copolymer electrolyte with adjustable functional units for solid polymer lithium metal battery. J. Energy Chem. 52, 67–74 (2021). https://doi.org/10.1016/j.jechem.2020.04.052

    Article  CAS  Google Scholar 

  153. Khurana, R., Schaefer, J.L., Archer, L.A., et al.: Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J. Am. Chem. Soc. 136, 7395–7402 (2014). https://doi.org/10.1021/ja502133j

    Article  CAS  Google Scholar 

  154. Pan, Q.W., Smith, D.M., Qi, H., et al.: Hybrid electrolytes with controlled network structures for lithium metal batteries. Adv. Mater. 27, 5995–6001 (2015). https://doi.org/10.1002/adma.201502059

    Article  CAS  Google Scholar 

  155. Peramunage, D., Pasquariello, D.M., Abraham, K.M.: Polyacrylonitrile-based electrolytes with ternary solvent mixtures as plasticizers. J. Electrochem. Soc. 142, 1789–1798 (1995). https://doi.org/10.1149/1.2044195

    Article  CAS  Google Scholar 

  156. Watanabe, M., Kanba, M., Nagaoka, K., et al.: Ionic conductivity of hybrid films composed of polyacrylonitrile, ethylene carbonate, and LiClO4. J. Polym. Sci.: Polym. Phys. Ed. 21, 939–948 (1983). https://doi.org/10.1002/pol.1983.180210610

  157. Webb, M.A., Jung, Y., Pesko, D.M., et al.: Systematic computational and experimental investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes. ACS Central Sci. 1, 198–205 (2015). https://doi.org/10.1021/acscentsci.5b00195

    Article  CAS  Google Scholar 

  158. Liu, L.H., Lyu, J., Mo, J.S., et al.: Comprehensively-upgraded polymer electrolytes by multifunctional aramid nanofibers for stable all-solid-state Li-ion batteries. Nano Energy 69, 104398 (2020). https://doi.org/10.1016/j.nanoen.2019.104398

    Article  CAS  Google Scholar 

  159. Porcarelli, L., Shaplov, A.S., Bella, F., et al.: Single-ion conducting polymer electrolytes for lithium metal polymer batteries that operate at ambient temperature. ACS Energy Lett. 1, 678–682 (2016). https://doi.org/10.1021/acsenergylett.6b00216

    Article  CAS  Google Scholar 

  160. Mai, L., Tian, X., Xu, X., et al.: Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 114, 11828–11862 (2014). https://doi.org/10.1021/cr500177a

    Article  CAS  Google Scholar 

  161. Li, X.Y., Chen, W.C., Qian, Q.R., et al.: Electrospinning-based strategies for battery materials. Adv. Energy Mater. 11, 2000845 (2021). https://doi.org/10.1002/aenm.202000845

    Article  CAS  Google Scholar 

  162. Wang, H.G., Yuan, S., Ma, D.L., et al.: Electrospun materials for lithium and sodium rechargeable batteries: from structure evolution to electrochemical performance. Energy Environ. Sci. 8, 1660–1681 (2015). https://doi.org/10.1039/c4ee03912b

    Article  CAS  Google Scholar 

  163. Liu, M., Deng, N.P., Ju, J.G., et al.: A review: electrospun nanofiber materials for lithium-sulfur batteries. Adv. Funct. Mater. 29, 1905467 (2019). https://doi.org/10.1002/adfm.201905467

    Article  CAS  Google Scholar 

  164. Liu, Q., Zhu, J.H., Zhang, L.W., et al.: Recent advances in energy materials by electrospinning. Renew. Sustain. Energy Rev. 81, 1825–1858 (2018). https://doi.org/10.1016/j.rser.2017.05.281

    Article  CAS  Google Scholar 

  165. Pandey, G.P., Klankowski, S.A., Li, Y.H., et al.: Effective infiltration of gel polymer electrolyte into silicon-coated vertically aligned carbon nanofibers as anodes for solid-state lithium-ion batteries. ACS Appl. Mater. Interfaces 7, 20909–20918 (2015). https://doi.org/10.1021/acsami.5b06444

    Article  CAS  Google Scholar 

  166. Klankowski, S.A., Rojeski, R.A., Cruden, B.A., et al.: A high-performance lithium-ion battery anode based on the core–shell heterostructure of silicon-coated vertically aligned carbon nanofibers. J. Mater. Chem. A 1, 1055–1064 (2013). https://doi.org/10.1039/c2ta00057a

    Article  CAS  Google Scholar 

  167. Slater, M.D., Kim, D., Lee, E., et al.: Sodium-ion batteries. Adv. Funct. Mater. 23, 947–958 (2013). https://doi.org/10.1002/adfm.201200691

    Article  CAS  Google Scholar 

  168. Nayak, P.K., Yang, L.T., Brehm, W., et al.: From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew. Chem.-Int. Edit. 57, 102–120 (2018). https://doi.org/10.1002/anie.201703772

    Article  CAS  Google Scholar 

  169. Kim, S.W., Seo, D.H., Ma, X.H., et al.: Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2, 710–721 (2012). https://doi.org/10.1002/aenm.201200026

    Article  CAS  Google Scholar 

  170. Vaalma, C., Buchholz, D., Weil, M., et al.: A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 3, 18013 (2018). https://doi.org/10.1038/natrevmats.2018.13

    Article  Google Scholar 

  171. Hwang, J.Y., Myung, S.T., Sun, Y.K.: Sodium-ion batteries: present and future. Chem. Soc. Rev. 46, 3529–3614 (2017). https://doi.org/10.1039/c6cs00776g

    Article  CAS  Google Scholar 

  172. Yabuuchi, N., Kubota, K., Dahbi, M., et al.: Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014). https://doi.org/10.1021/cr500192f

    Article  CAS  Google Scholar 

  173. Gao, R.T., Tan, R., Han, L., et al.: Nanofiber networks of Na3V2(PO4)3 as a cathode material for high performance all-solid-state sodium-ion batteries. J. Mater. Chem. A 5, 5273–5277 (2017). https://doi.org/10.1039/c7ta00314e

    Article  CAS  Google Scholar 

  174. Zhang, X., Xie, J., Shi, F., et al.: Vertically aligned and continuous nanoscale ceramic-polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity. Nano Lett. 18, 3829–3838 (2018). https://doi.org/10.1021/acs.nanolett.8b01111

    Article  CAS  Google Scholar 

  175. Liu, K., Wu, M.C., Wei, L., et al.: A composite solid electrolyte with a framework of vertically aligned perovskite for all-solid-state Li-metal batteries. J. Membr. Sci. 610, 118265 (2020). https://doi.org/10.1016/j.memsci.2020.118265

    Article  CAS  Google Scholar 

  176. Zhai, H.W., Xu, P.Y., Ning, M.Q., et al.: A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries. Nano Lett. 17, 3182–3187 (2017). https://doi.org/10.1021/acs.nanolett.7b00715

    Article  CAS  Google Scholar 

  177. Tang, W.J., Tang, S., Guan, X.Z., et al.: High-performance solid polymer electrolytes filled with vertically aligned 2D materials. Adv. Funct. Mater. 29, 1900648 (2019). https://doi.org/10.1002/adfm.201900648

    Article  CAS  Google Scholar 

  178. Wang, X., Zhai, H.W., Qie, B.Y., et al.: Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte. Nano Energy 60, 205–212 (2019). https://doi.org/10.1016/j.nanoen.2019.03.051

    Article  Google Scholar 

  179. Wan, J.Y., Xie, J., Kong, X., et al.: Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 14, 705–711 (2019). https://doi.org/10.1038/s41565-019-0465-3

    Article  CAS  Google Scholar 

  180. Wang, X., Wang, T.Y., Borovilas, J., et al.: Vertically-aligned nanostructures for electrochemical energy storage. Nano Res. 12, 2002–2017 (2019). https://doi.org/10.1007/s12274-019-2392-x

    Article  Google Scholar 

  181. Wolfenstine, J., Allen, J.L., Sakamoto, J., et al.: Mechanical behavior of Li-ion-conducting crystalline oxide-based solid electrolytes: a brief review. Ionics 24, 1271–1276 (2018). https://doi.org/10.1007/s11581-017-2314-4

    Article  CAS  Google Scholar 

  182. Ke, X.Y., Wang, Y., Ren, G.F., et al.: Towards rational mechanical design of inorganic solid electrolytes for all-solid-state lithium ion batteries. Energy Storage Mater. 26, 313–324 (2020). https://doi.org/10.1016/j.ensm.2019.08.029

    Article  Google Scholar 

  183. Bi, J.Y., Mu, D.B., Wu, B.R., et al.: A hybrid solid electrolyte Li0.33La0.557TiO3/poly(acylonitrile) membrane infiltrated with a succinonitrile-based electrolyte for solid state lithium-ion batteries. J. Mater. Chem. A 8, 706–713 (2020). https://doi.org/10.1039/c9ta08601c

  184. Li, D., Chen, L., Wang, T.S., et al.: 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries. ACS Appl. Mater. Interfaces 10, 7069–7078 (2018). https://doi.org/10.1021/acsami.7b18123

    Article  CAS  Google Scholar 

  185. Jia, M.Y., Zhao, N., Huo, H.Y., et al.: Comprehensive investigation into garnet electrolytes toward application-oriented solid lithium batteries. Electrochem. Energy Rev. 3, 656–689 (2020). https://doi.org/10.1007/s41918-020-00076-1

    Article  CAS  Google Scholar 

  186. Yan, C.Y., Zhu, P., Jia, H., et al.: High-performance 3-D fiber network composite electrolyte enabled with Li-ion conducting nanofibers and amorphous PEO-based cross-linked polymer for ambient all-solid-state lithium-metal batteries. Adv. Fiber Mater. 1, 46–60 (2019). https://doi.org/10.1007/s42765-019-00006-x

    Article  Google Scholar 

  187. He, K.Q., Zha, J.W., Du, P., et al.: Tailored high cycling performance in a solid polymer electrolyte with perovskite-type Li0.33La0.557TiO3 nanofibers for all-solid-state lithium ion batteries. Dalton Trans. 48, 3263–3269 (2019). https://doi.org/10.1039/c9dt00074g

  188. Wang, S., Zhang, L., Li, J.Y., et al.: A nanowire-nanoparticle double composite polymer electrolyte for high performance ambient temperature solid-state lithium batteies. Electrochim. Acta 320, 134560 (2019). https://doi.org/10.1016/j.electacta.2019.134560

    Article  CAS  Google Scholar 

  189. Zhang, L., Wang, S., Li, J.Y., et al.: A nitrogen-containing all-solid-state hyperbranched polymer electrolyte for superior performance lithium batteries. J. Mater. Chem. A 7, 6801–6808 (2019). https://doi.org/10.1039/c9ta00180h

    Article  CAS  Google Scholar 

  190. Liu, W., Lin, D., Sun, J., et al.: Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires. ACS Nano 10, 11407–11413 (2016). https://doi.org/10.1021/acsnano.6b06797

    Article  CAS  Google Scholar 

  191. Cao, D.X., Sun, X., Li, Q., et al.: Lithium dendrite in all-solid-state batteries: growth mechanisms, suppression strategies, and characterizations. Matter 3, 57–94 (2020). https://doi.org/10.1016/j.matt.2020.03.015

    Article  Google Scholar 

  192. Yang, T., Zheng, J., Cheng, Q., et al.: Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology. ACS Appl. Mater. Interfaces 9, 21773–21780 (2017). https://doi.org/10.1021/acsami.7b03806

    Article  CAS  Google Scholar 

  193. Balaish, M., Gonzalez-Rosillo, J.C., Kim, K.J., et al.: Processing thin but robust electrolytes for solid-state batteries. Nat. Energy 6, 227–239 (2021). https://doi.org/10.1038/s41560-020-00759-5

    Article  CAS  Google Scholar 

  194. Zhao, Y., Zheng, K., Sun, X.L.: Addressing interfacial issues in liquid-based and solid-state batteries by atomic and molecular layer deposition. Joule 2, 2583–2604 (2018). https://doi.org/10.1016/j.joule.2018.11.012

    Article  CAS  Google Scholar 

  195. Yang, X.F., Adair, K.R., Gao, X.J., et al.: Recent advances and perspectives on thin electrolytes for high-energy-density solid-state lithium batteries. Energy Environ. Sci. 14, 643–671 (2021). https://doi.org/10.1039/d0ee02714f

    Article  CAS  Google Scholar 

  196. Wang, C.H., Liang, J.W., Zhao, Y., et al.: All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design. Energy Environ. Sci. 14, 2577–2619 (2021). https://doi.org/10.1039/d1ee00551k

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial supports to Hongli Zhu from the National Science Foundation Electrochemical Systems Program at the Division of Chemical, Bioengineering, Environmental, and Transport Systems (CBET-1924534) and Rogers Corporation, United States are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongli Zhu.

Ethics declarations

Conflict of interest

All authors declare no conflicts of interest.

Ethics approval

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Sun, X., Cao, D. et al. Versatile Electrospinning for Structural Designs and Ionic Conductor Orientation in All-Solid-State Lithium Batteries. Electrochem. Energy Rev. 5, 18 (2022). https://doi.org/10.1007/s41918-022-00170-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41918-022-00170-6

Keywords

Navigation