Sweat-Driven Silk-yarn Switches Enabled by Highly Aligned Gaps for Air-conditioning Textiles


Smart textiles are attracting great interest. Particularly, air-conditioning textiles are highly desired for their merits in energy conservation and personal temperature/humidity management. Currently, air-conditioning textiles can be fabricated by two strategies. One uses infrared-radiation-adaptive materials, and the other uses moisture-responsive actuators that can regulate temperature and humidity simultaneously. Here, the fabrication of a silk-yarn switch comprising electrospun highly aligned nanofibers is reported and its application in air-conditioning textiles is demonstrated. Silk yarn rotates in contact with liquid, and can be recovered by drying. The different responses and wetting behaviors of the switch to H2O and C2H6O is investigated. It is argued that alignment and surface hydrophilicity of nanofibers play important roles in this term. To elaborate, actuating trait is mainly controlled by reduction of the surface free energy of aligned silk nanofibers, during the wetting process. As proof of concept, the application of the sweat-driven silk-yarn switch in regulating the temperature/humidity of the human body is demonstrated in this work. Considering the large production, versatile processibility, and good biocompatibility, silk actuator may have practical applications in designing smart switches (or valves) for intelligent textiles, artificial muscles, and other application scenarios.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Smart dress: Innovations in wearable tech. 2018. https://industryeurope.com/sma/. Accessed 21 July 2018.

  2. 2.

    Jinno H, Fukuda K, Xu X, Park S, Suzuki Y, Koizumi M, Yokota T, Osaka I, Takimiya K, Someya T. Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications. Nat Energy. 2017;2:780–5.

    CAS  Article  Google Scholar 

  3. 3.

    Huang Q, Wang D, Zheng Z. Textile-based electrochemical energy storage devices. Adv Energy Mater. 2016;6:1600783.

    Article  Google Scholar 

  4. 4.

    Li H, Han C, Huang Y, Huang Y, Zhu M, Pei Z, Xue Q, Wang Z, Liu Z, Tang Z, Wang Y, Kang F, Li B, Zhi C. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ Sci. 2018;11:941–51.

    CAS  Article  Google Scholar 

  5. 5.

    Tao X. Study of fiber-based wearable energy systems. Acc Chem Res. 2019;52:307–15.

    CAS  Article  Google Scholar 

  6. 6.

    Chen S, Ma W, Xiang H, Cheng Y, Yang S, Weng W, Zhu M. Conductive, tough, hydrophilic poly(vinyl alcohol)/graphene hybrid fibers for wearable supercapacitors. J Power Sources. 2016;319:271–80.

    CAS  Article  Google Scholar 

  7. 7.

    Rein M, Favrod VD, Hou C, Khudiyev T, Stolyarov A, Cox J, Chung C, Chhav C, Ellis M, Joannopoulos J, Fink Y. Diode fibres for fabric-based optical communications. Nature. 2018;560:214–8.

    CAS  Article  Google Scholar 

  8. 8.

    Wang C, Xia K, Wang H, Liang X, Yin Z, Zhang Y. Advanced carbon for flexible and wearable electronics. Adv Mater. 2019;31:1801072.

    Article  Google Scholar 

  9. 9.

    Crow BB, Nelson KD. Release of bovine serum albumin from a hydrogel-cored biodegradable polymer fiber. Biopolymers. 2006;81:419–27.

    CAS  Article  Google Scholar 

  10. 10.

    Hsu P, Song AY, Catrysse PB, Liu C, Peng Y, Xie J, Fan S, Cui Y. Radiative human body cooling by nanoporous polyethylene textile. Science. 2016;353:1019–23.

    CAS  Article  Google Scholar 

  11. 11.

    Zhang M, Wang C, Liang X, Yin Z, Xia K, Wang H, Jian M, Zhang Y. Weft-knitted fabric for a highly stretchable and low-voltage wearable heater. Adv Electron Mater. 2017;3:1700193.

    Article  Google Scholar 

  12. 12.

    Wang X, Huang Z, Miao D, Zhao J, Yu J, Ding B. Biomimetic fibrous murray membranes with ultrafast water transport and evaporation for smart moisture-wicking fabrics. ACS Nano. 2018;13:1060–70.

    Google Scholar 

  13. 13.

    Wang W, Yao L, Cheng C, Zhang T, Atsumi H, Wang L, Wang G, Anilionyte O, Steiner H, Ou J, Zhou K, Wawrousek C, Petrecca K, Belcher AM, Karnik R, Zhao X, Wang DIC, Ishii H. Harnessing the hygroscopic and biofluorescent behaviors of genetically tractable microbial cells to design biohybrid wearables. Sci Adv. 2017;3:e1601984.

    Article  Google Scholar 

  14. 14.

    Zhai Y, Ma Y, David SN, Zhao D, Lou R, Tan G, Yang R, Yin X. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science. 2017;355:1062–6.

    CAS  Article  Google Scholar 

  15. 15.

    Zhang XA, Yu S, Xu B, Li M, Peng Z, Wang Y, Deng S, Wu X, Wu Z, Ouyang M, Wang Y. Dynamic gating of infrared radiation in a textile. Science. 2019;363:619–23.

    CAS  Article  Google Scholar 

  16. 16.

    Stoychev GV, Ionov L. Actuating fibers: design and Applications. ACS Appl Mater Interfaces. 2016;8:24281–94.

    CAS  Article  Google Scholar 

  17. 17.

    Cheng H, Hu Y, Zhao F, Dong Z, Wang Y, Chen N, Zhang Z, Qu L. Moisture-activated torsional graphene-fiber motor. Adv Mater. 2014;26:2909–13.

    CAS  Article  Google Scholar 

  18. 18.

    Lima MD, Li N, De Andrade MJ, Fang S, Oh J, Spinks GM, Kozlov ME, Haines CS, Suh D, Foroughi J. Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles. Science. 2012;338:928–32.

    CAS  Article  Google Scholar 

  19. 19.

    Chen P, Xu Y, He S, Sun X, Pan S, Deng J, Chen D, Peng H. Hierarchically arranged helical fibre actuators driven by solvents and vapours. Nat Nanotechnol. 2015;10:1077–83.

    CAS  Article  Google Scholar 

  20. 20.

    Haines CS, Lima MD, Li N, Spinks GM, Foroughi J, Madden JD, Kim SH, Fang S, de Andrade MJ, Göktepe F. Artificial muscles from fishing line and sewing thread. Science. 2014;343:868–72.

    CAS  Article  Google Scholar 

  21. 21.

    Ling S, Kaplan DL, Buehler MJ. Nanofibrils in nature and materials engineering. Nat Rev Mater. 2018;3:18016.

    CAS  Article  Google Scholar 

  22. 22.

    Wang C, Wu S, Jian M, Xie J, Xu L, Yang X, Zheng Q, Zhang Y. Silk nanofibers as high efficient and lightweight air filter. Nano Res. 2016;9:2590–7.

    Article  Google Scholar 

  23. 23.

    Zhang Q, Wang D, Huang J, Zhou W, Luo G, Qian W, Wei F. Dry spinning yarns from vertically aligned carbon nanotube arrays produced by an improved floating catalyst chemical vapor deposition method. Carbon. 2010;48:2855–61.

    CAS  Article  Google Scholar 

  24. 24.

    Wang X, Kim HJ, Xu P, Matsumoto A, Kaplan DL. Biomaterial coatings by stepwise deposition of silk fibroin. Langmuir. 2005;21:11335–41.

    CAS  Article  Google Scholar 

  25. 25.

    Yin Z, Jian M, Wang C, Xia K, Liu Z, Wang Q, Zhang M, Wang H, Liang X, Liang X, Long Y, Yu X, Zhang Y. Splash-resistant and light-weight silk-sheathed wires for textile electronics. Nano Lett. 2018;18:7085–91.

    CAS  Article  Google Scholar 

  26. 26.

    Zhang C, Zhang Y, Shao H, Hu X. Hybrid silk fibers dry-spun from regenerated silk fibroin/graphene oxide aqueous solutions. ACS Appl Mater Interfaces. 2016;8:3349–58.

    CAS  Article  Google Scholar 

  27. 27.

    Wang S, Li T, Chen C, Kong W, Zhu S, Dai J, Diaz AJ, Hitz E, Solares SD, Li T, Hu L. Transparent, anisotropic biofilm with aligned bacterial cellulose nanofibers. Adv Funct Mater. 2018;28:1707491.

    Article  Google Scholar 

  28. 28.

    Schroeder WA, Kay LM, Lewis B, Munger N. The amino acid composition of bombyx mori silk fibroin and of tussah silk fibroin. J Am Chem Soc. 1955;77:3908–13.

    CAS  Article  Google Scholar 

  29. 29.

    Lawrence BD, Wharram S, Kluge JA, Leisk GG, Omenetto FG, Rosenblatt MI, Kaplan DL. Effect of hydration on silk film material properties. Macromol Biosci. 2010;10:393–403.

    CAS  Article  Google Scholar 

  30. 30.

    Li Y, Quéré D, Lv C, Zheng Q. Monostable superrepellent materials. Proc Natl Acad Sci USA. 2017;114:3387–92.

    CAS  Article  Google Scholar 

  31. 31.

    Vakarelski IU, Patankar NA, Marston JO, Chan DYC, Thoroddsen ST. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature. 2012;489:274–7.

    CAS  Article  Google Scholar 

  32. 32.

    Bico J, Roman B, Moulin L, Boudaoud A. Elastocapillary coalescence in wet hair. Nature. 2004;432:690.

    CAS  Article  Google Scholar 

Download references


This work was supported by the NSF of China (51672153, 51422204, 21975141) and the National Key Basic Research and Development Program (No. 2016YFA0200103), the National Program for Support of Top-notch Young Professionals.

Author information



Corresponding author

Correspondence to Yingying Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 2 (MP4 5934 kb)

Supplementary material 3 (MP4 880 kb)

Supplementary material 4 (MP4 5099 kb)

Supplementary material 1 (DOC 5736 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yin, Z., Shi, S., Liang, X. et al. Sweat-Driven Silk-yarn Switches Enabled by Highly Aligned Gaps for Air-conditioning Textiles. Adv. Fiber Mater. 1, 197–204 (2019). https://doi.org/10.1007/s42765-019-00021-y

Download citation


  • Silk fibroin
  • Aligned gaps
  • Yarn actuator
  • Surface free energy
  • Dynamic regulation