Skip to main content

Advertisement

Log in

Influence of Nitrogen on Physiological Responses to Bicarbonate in a Grapevine Rootstock

  • Research Article
  • Published:
Journal of Soil Science and Plant Nutrition Aims and scope Submit manuscript

Abstract

The presence of bicarbonate in soils is an important inducer of nutritional deficiencies in some grapevine genotypes. The aim of this experiment was to assess the effects of different nitrogen sources on physiological variables in the grapevine rootstock 110 Richter grown in a sub-alkaline media. Plants of the grapevine rootstock 110 Richter were treated with different nitrogen sources (NO3, NH4+, or NH4NO3) in a nutrient solution enriched with bicarbonate. Root enzyme (PEPC, MDH, CS, NADP+-IDH) activities, organic acid concentrations in roots, plant growth and leaf greenness, leaf gas exchange, and mineral concentrations in leaves were determined. The presence of NH4+ promoted an enhancement in leaf greenness, and the treated plants did not trigger physiological response mechanisms to nutritional deficiencies in the roots. However, NH4+ decreased the leaf K concentration. On the other hand, the presence of NO3 in the nutrient solution decreased the leaf greenness, and increased the organic acid concentration in the roots, indicating that these plants were affected by nutritional deficiencies. Instead, intermediate results were obtained in plants treated with NH4NO3. Under the experimental conditions used in this experiment, treatments did not significantly influence the plant biomass, the activity of some enzymes related to organic acids biosynthesis, and the leaf gas exchange. These results suggest that the presence of NH4+ can be an effective strategy to alleviate the negative effects on plant nutrition induced by bicarbonate in plants, an alternative to the soil acidification through inorganic acid applications to the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bertrand M, Poirier I (2005) Photosynthetic organisms and excess of metals. Photosynthetica 43(3):345–353

    Article  CAS  Google Scholar 

  • Cambrollé J, García JL, Figueroa ME, Cantos M (2014) Physiological responses to soil lime in wild grapevine (Vitis vinifera ssp. sylvestris). Environ Exp Bot 105:25–31

    Article  CAS  Google Scholar 

  • Chen Y, Wang Y, Yeh K (2017) Role of root exudates in metal acquisition and tolerance. Curr Opin Plant Biol 39:66–72

    Article  CAS  PubMed  Google Scholar 

  • Chollet R, Vidal J, O’Leary MH (1996) Phosphoenolpyruvate carboxylase: a ubiquitous, highly regulated enzyme in plants. Annu Rev Plant Phys 47:273–298

    Article  CAS  Google Scholar 

  • Covarrubias JI, Rombolà AD (2013) Physiological and biochemical responses of the iron chlorosis tolerant grapevine rootstock 140 Ruggeri to iron deficiency and bicarbonate. Plant Soil 370(1–2):305–315

    Article  CAS  Google Scholar 

  • Covarrubias JI, Rombolà AD (2015) Organic acids metabolism in roots of grapevine rootstocks under severe iron deficiency. Plant Soil 394(1–2):165–175

    Article  CAS  Google Scholar 

  • Covarrubias JI, Pisi A, Rombolá AD (2014) Evaluation of sustainable management techniques for preventing iron chlorosis in the grapevine. Aust J Grape Wine Res 20:149–159

    Article  CAS  Google Scholar 

  • Covarrubias JI, Retamales C, Donnini S, Rombolà AD, Pastenes C (2016) Contrasting physiological responses to iron deficiency in cabernet sauvignon grapevines grafted on two rootstocks. Sci Hortic 199:1–8

    Article  CAS  Google Scholar 

  • Donnini S, De Nisi P, Gabotti D, Tato L, Zocchi G (2012) Adaptive strategies of Parietaria diffusa (M.&K.) to calcareous habitat with limited iron availability. Plant. Cell Environ 35(6):1171–1184

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Parry M, Noctor G (2003) Markers and signals associated with nitrogen assimilation in higher plants. J Exp Bot 54:585–593

    Article  CAS  PubMed  Google Scholar 

  • Granja F, Covarrubias JI (2018) Evaluation of acidifying nitrogen fertilizers in avocado trees with iron deficiency symptoms. J Soil Sci Plant Nutr 18(1):157–172

    CAS  Google Scholar 

  • Jelali N, Wissal M, Dell’orto M, Abdellya C, Gharsallia M, Zocchi G (2010) Changes of metabolic responses to direct and induced Fe deficiency of two Pisum sativum cultivars. Environ Exp Bot 68:238–246

    Article  CAS  Google Scholar 

  • Jimenez S, Gogorcena Y, Hévin C, Rombolà AD, Ollat N (2007) Nitrogen nutrition influences some biochemical responses to iron deficiency in tolerant and sensitive genotypes of Vitis. Plant Soil 290:343–355

    Article  CAS  Google Scholar 

  • Keller M, Kummer M, Vasconcelos MC (2001) Soil nitrogen utilisation for growth and gas exchange by grapevines in response to nitrogen supply and rootstock. Aust J Grape Wine Res 7:2–11

    Article  CAS  Google Scholar 

  • Kosegarten H, Hoffmann B, Mengel K (2001) The paramount influence of nitrate in increasing apopastic pH of young sunflower leaves to induce Fe deficiency chlorosis, and the re-greening effect brought about by acidic foliar sprays. J Plant Nutr Soil Sci 164:155–163

    Article  CAS  Google Scholar 

  • Kronzucker HJ, Szczerba MW, Britto DT (2003) Cytosolic potassium homeostasis revisited: 42K-tracer analysis reveals setpoint variations in [K+]. Planta 217:540–546

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, He T, Cao T, Yang T, Meng J, Chen W (2017) Effects of biochar application on nitrogen leaching, ammonia volatilization and nitrogen use efficiency in two distinct soils. J Soil Sci Plant Nutr 17(2):515–528

    CAS  Google Scholar 

  • López-Millán AF, Morales F, Andaluz S, Gogorcena Y, Abadía A, De Las Rivas J, Abadía J (2000) Responses of sugar beet roots to iron deficiency. Changes in carbon assimilation and oxygen use. Plant Physiol 124:885–897

    Article  PubMed  PubMed Central  Google Scholar 

  • Loulakakis KA, Morot-Gaudry JF, Velanis CN, Skopelitis DS, Moschou PN, Hirel B, Roubelakis-Angelakis KA (2009) Advancements in nitrogen metabolism in grapevine. In: Roubelakis-Angelakis KA (ed) Grapevine molecular physiology & biotechnology. Springer, Dordrecht, pp 161–205

    Chapter  Google Scholar 

  • Lucena C, Romera FJ, Rojas CL, García MJ, Alcántara E, Pérez-Vicente R (2007) Bicarbonate blocks the expression of several genes involved in the physiological responses to Fe deficiency of strategy I plants. Funct Plant Biol 34:1002–1009

    Article  CAS  Google Scholar 

  • M’sehli W, Dell’Orto M, De Nisi P, Donnini S, Abdelly C, Zocchi G, Gharsalli M (2009) Responses of two ecotypes of Medicago ciliaris to direct and bicarbonate-induced iron deficiency conditions. Acta Physiol Plant 31:667–673

    Article  CAS  Google Scholar 

  • Mengel K, Planker R, Hoffmann B (1994) Relationship between leaf apoplast pH and iron chlorosis of sunflower (Helianthus annuus L.). J Plant Nutr 17:1053–1065

    Article  CAS  Google Scholar 

  • Morales F, Belkhodja R, Abadía A, Abadía J (2000) Photosystem II efficiency and mechanisms of energy dissipation in iron-deficient, field-grown pear trees (Pyrus communis L.). Photosynth Res 63:9–21

    Article  CAS  PubMed  Google Scholar 

  • Murtaza B, Murtaza G, Imran M, Amjad M, Naeem A, Shah GM, Wakeel A (2017) Yield and nitrogen use efficiency of rice-wheat cropping system in gypsum amended saline-sodic soil. J Soil Sci Plant Nutr 17(3):686–701

    Article  CAS  Google Scholar 

  • Neumann G (2006) Root exudates and organic composition of plant roots. In: Luster J, Finlay R (eds) Handbook of methods used in rhizosphere research. Swiss Federal Research Institute WSL, Birmensdorf, p 536

    Google Scholar 

  • Nieves-Cordones M, Alemán F, Martínez V, Rubio F (2014) K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms. J Plant Physiol 171(9):688–695

    Article  CAS  PubMed  Google Scholar 

  • Nikolic M, Römheld V, Merkt N (2000) Effect of bicarbonate on uptake and translocation of 59Fe in two grapevine rootstocks differing in their resistance to Fe deficiency chlorosis. Vitis 39(4):145–149

    CAS  Google Scholar 

  • Ollat N, Laborde B, Neveux M, Diakou-Verdin P, Renaud C, Moing A (2003) Organic acid metabolism in roots of various grapevine (Vitis) rootstocks submitted to iron deficiency and bicarbonate nutrition. J Plant Nutr 26(10&11):2165–2176

    Article  CAS  Google Scholar 

  • Römheld V (2000) The chlorosis paradox: Fe inactivation as a secondary event in chlorotic leaves of grapevine. J Plant Nutr 23(11–12):1629–1643

    Article  Google Scholar 

  • Santa-María GE, Danna CH, Czibener C (2000) High-affinity potassium transport in barley roots. Ammonium sensitive and insensitive pathways. Plant Physiol 123:297–306

    Article  PubMed  PubMed Central  Google Scholar 

  • Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardiand MK, Stitt M (2004) Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol 136(1):2483–2499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szczerba, M.W., Britto, D.T., Ali, S.A., Balkos, K.D., Kronzucker, H.J. 2008. NH4 +-stimulated and-inhibited components of K+ transport in rice (Oryza sativa L.). J Exp Bot 59(12), 3415–3423

Download references

Acknowledgments

This study has been supported by the Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) of Chile (project “Desarrollo del Área de Nutrición Vegetal en el Departamento de Producción Agrícola de la Facultad de Ciencias Agronómicas de la Universidad de Chile” - PAI - No 7912010003).

Funding

This study was funded by the Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) of Chile (project “Desarrollo del Área de Nutrición Vegetal en el Departamento de Producción Agrícola de la Facultad de Ciencias Agronómicas de la Universidad de Chile” - PAI - No 7912010003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Ignacio Covarrubias.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molina, J., Covarrubias, J.I. Influence of Nitrogen on Physiological Responses to Bicarbonate in a Grapevine Rootstock. J Soil Sci Plant Nutr 19, 305–312 (2019). https://doi.org/10.1007/s42729-019-00030-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42729-019-00030-1

Keywords

Navigation