Skip to main content

Advertisement

Log in

Photosynthetic organisms and excess of metals

  • Review
  • Published:
Photosynthetica

Abstract

When cells get metals in small excess, mechanisms of avoidance occur, such as exclusion, sequestration, or compartmentation. When the excess reaches sub-lethal concentrations, the oxidative stress, that toxic metals trigger, leads to persistent active oxygen species. Biomolecules are then destroyed and metabolism is highly disturbed. At the chloroplast level, changes in pigment content and lipid peroxidation are observed. The disorganized thylakoids impair the photosynthetic efficiency. The Calvin cycle is also less efficient and the photosynthetic organism grows slowly. When an essential metal is given together with a harmful one, the damages are less severe than with the toxic element alone. Combined metals and phytochelatins may act against metal toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AOS:

active oxygen species

AP:

ascorbate peroxidase

Chl:

chlorophyll

GR:

glutathione reductase

GSH:

reduced glutathione

GSSG:

oxidized glutathione

HM:

heavy metal(s) (the element symbol may include different chemical species)

PC:

phytochelatin

Pchlide:

protochlorophyllide

PS:

photosystem

RuBPCO:

ribulose-1,5-bisphosphate carboxylase/oxygenase

SOD:

superoxide dismutase

References

  • Abadia, A., Lemoine, Y., Tremolieres, A., Ambard-Bretteville, F., Remy, R.: Iron deficiency in pea: effects on pigment, lipid and pigment-protein complex composition of thylakoids. — Plant Physiol. Biochem. 27: 679–687, 1989.

    Google Scholar 

  • Abd-El-Monem, M., Corradi, M.G., Gorbi, G.: Toxicity of copper and zinc to two strains of Scenedesmus acutus having different sensitivity to chromium. — Environ. exp. Bot. 40: 59–66, 1998.

    Article  Google Scholar 

  • Aravind, P., Prasad, M.N.V.: Zn protects chloroplasts and associated photochemical functions in cadmium exposed Ceratophyllum demersum L., a freshwater macrophyte. — Plant Sci. 166: 1321–1327, 2004.

    Article  Google Scholar 

  • Archambault, D.J., Zhang, G., Taylor, G.J.: Accumulation of Al in root mucilage of an Al-resistant and an Al-sensitive cultivar of wheat. — Plant Physiol. 112: 1471–1478, 1996.

    PubMed  Google Scholar 

  • Atal, N., Saradhi, P.P., Mohanty, P.: Inhibition of the chloroplast photochemical reactions by treatment of wheat seedlings with low concentrations of cadmium: Analysis of electron transport activities and changes in fluorescence yield. — Plant Cell Physiol. 32: 943–951, 1991.

    Google Scholar 

  • Backor, M., Hudak, J., Backorova, M.: Comparison between growth responses of autotrophic and heterotrophic population of lichen photobiont Trebouxia (Chlorophyta) on Cu, Hg and Cd chloride treatments. — Phyton Ann. Rei bot. A 38: 239–250, 1998.

    Google Scholar 

  • Backor, M., Vaczi, P.: Copper tolerance in the lichen photobiont Trebouxia erici (Chlorophyta). — Environ. exp. Bot. 48: 11–20, 2001.

    Article  Google Scholar 

  • Barcelo, J., Vazquez, M.D., Poschenrieder, C.: Structural and ultrastructural disorders in cadmium-treated bush bean plants (Phaseolus vulgaris L.). — New Phytol. 108: 37–49, 1988.

    Google Scholar 

  • Baryla, A., Carrier, P., Franck, F., Coulomb. C., Sahut, C., Havaux, M.: Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: causes and consequences for photosynthesis and growth. — Planta 212: 696–709, 2001.

    Article  PubMed  Google Scholar 

  • Baszynski, T., Wajda, L., Krol, M., Wolinska, D., Krupa, Z., Tukendorf, A.: Photosynthetic activities of cadmium-treated tomato plants. — Physiol. Plant. 48: 365–370, 1980.

    Google Scholar 

  • Benemann, J.: Literature review on the use of bioaccumulation for heavy metal removal and recovery.-WSRC-TR-175. Vol. 2. Westinghouse Savannah River Co., Aiken 1991.

    Google Scholar 

  • Berger, G., Girault, G.: Comparison of different cations (Mn2+, Mg2+, Ca2+) on the hydrolytic activity of chloroplast ATPase. — J. Bioenerg. Biomembr. 33: 93–98, 2001.

    Article  PubMed  Google Scholar 

  • Bertrand, M., Guary, J.C., Schoefs, B.: How plants adapt their physiology to an excess of metal. — In: Pessarakli, M. (ed.): Handbook of Plant and Crop Physiology. Pp. 751–761. Marcel Dekker, New York 2001a.

    Google Scholar 

  • Bertrand, M., Schoefs, B., Siffel, P., Rohacek, K., Molnar, I.: Cadmium inhibits epoxidation of diatoxanthin to diadinoxanthin in the xanthophyll cycle of the marine diatom Phaeodactylum tricornutum. — FEBS Lett. 508: 153–156, 2001b.

    Article  PubMed  Google Scholar 

  • Blamey, F.P.C., Joyce, D.C., Edwards, D.G., Asher, C.J.: Role of trichomes in sunflower tolerance to manganese toxicity. — Plant Soil 91: 171–180, 1986.

    Article  Google Scholar 

  • Brune, A., Urbach, W., Dietz, K.-J.: Compartmentation and transport of zinc in barley primary leaves as basic mechanisms involved in zinc tolerance. — Plant Cell Environ. 17: 153–162, 1994.

    Google Scholar 

  • Cakmak, L.: Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. — New Phytol. 146: 185–205, 2000.

    Article  Google Scholar 

  • Carrier, P., Baryla, A., Havaux, M.: Cadmium distribution and microlocalization in oilseed rape (Brassica napus) after longterm growth on cadmium-contaminated soil. — Planta 216: 939–950, 2003.

    PubMed  Google Scholar 

  • Caspi, V., Droppa, M., Horvath, G., Malkin, S., Marder, J.B., Raskin, V.I.: The effect of copper on chlorophyll organization during greening of barley leaves. — Photosynth. Res. 62: 165–174, 1999.

    Article  Google Scholar 

  • Chettri, M.K., Cook, C.M., Vardaka, E., Sawidis, T., Larranas, T.: The effect of Cu, Zn and Pb on the chlorophyll content of the lichen Cladonia convoluta and Cladonia rangiformis. — Environ. exp. Bot. 39: 1–10, 1998.

    Article  Google Scholar 

  • Cho, U.H., Sohn, J.Y.: Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and lipid peroxidation in Arabidopsis thatliana. — J. Plant Biol. 47: 262–269, 2004.

    Google Scholar 

  • Chvapil, M.: New aspects in the biological role of zinc: a stabilizer of macromolecules and biological membranes.-Life Sci. 13: 1041–1049, 1973.

    Article  PubMed  Google Scholar 

  • Clijsters, H., Van Assche, F.: Inhibition of photosynthesis by heavy metals. — Photosynth. Res. 70: 31–40, 1985.

    Article  Google Scholar 

  • Cobbett, C.S.: Phytochelatins and their roles in heavy metal detoxification. — Plant Physiol. 123: 825–832, 2000.

    Article  PubMed  Google Scholar 

  • Connolly, E.L., Guerinot, M.L.: Iron stress in plants. — Genome Biol. 3: 1024.1–1024.4, 2002.

    Article  Google Scholar 

  • Conway, H.L.: Sorption of arsenic and cadmium and their effects on growth, micronutrient utilization, and photosynthetic pigment composition of Asterionella formosa. — J. Fish. Res. Board Can. 35: 286–294, 1978.

    Google Scholar 

  • De Filippis, L.F., Ziegler, H.: Effect of sublethal concentrations of zinc, cadmium and mercury on the photosynthetic carbon reduction cycle of Euglena. — J. Plant Physiol. 142: 167–172, 1993.

    Google Scholar 

  • Demidchik, V., Sololik, A., Yurin, V.: The effect of Cu2+ on ion transport systems of the plant plasmalemma.-Plant Physiol. 114: 1313–1325, 1997.

    PubMed  Google Scholar 

  • De Vos, C.H.R., Schat, H.: Free radicals and heavy metal tolerance. — In: Rozema, J., Verkleij, J.A.C. (ed.): Ecological Responses to Environmental Stresses. Pp. 22–30. Kluwer Academic Publ., Dordrecht 1991.

    Google Scholar 

  • Dietz, K.J., Heber, U., Mimura, T.: Modulation of the vacuolar H+-ATPase by adenylates as basis for the transient CO2-dependent acidification of the leaf vacuole upon illumination. — Biochim. biophys. Acta 1373: 87–92, 1998.

    PubMed  Google Scholar 

  • Ernst, W.H.O., Neilssen, H.J.M., Ten Bookum, W.M.: Combination toxicology of metal-enriched soils: physiological responses of a Zn-and Cd-resistant ecotype of Silene vulgaris on polymetallic soils. — Environ. exp. Bot. 43: 55–71, 2000.

    Article  Google Scholar 

  • Ferro, M., Salvis, D., Brugiere, S., Miras, S., Kowalski, S., Louwagie, M., Garin, J., Joyard, J., Rolland, N.: Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. — Mol. cell. Proteom. 2: 325–345, 2003.

    Google Scholar 

  • Fodor, F., Boddi, B., Sarvari, E., Zaray, G., Cseh, E., Lang, F.: Correlation of iron content, spectral forms of chlorophyll and chlorophyll-proteins in iron deficient cucumber (Cucumis sativus). — Physiol. Plant. 93: 750–756, 1995.

    Article  Google Scholar 

  • Fourest, E., Volesky, B.: Alginate properties and heavy metal biosorption by marine algae. — Appl. Biochem. Biotechnol. 61: 33–44, 1997.

    Google Scholar 

  • Foy, C.D., Chaney, R.L., White, M.C.: The physiology of metal toxicity in plants. — Annu. Rev. Plant Physiol. 29: 511–566, 1978.

    Article  Google Scholar 

  • Gallego, S.M., Benavides, M.P., Tomaro, M.L.: Effect of heavy metal ion excess on suflower leaves evidence for involvement of oxidative stress. — Plant Sci. 121: 151–159, 1996.

    Article  Google Scholar 

  • Gekeler, W., Grill, E., Winnacker, E.L., Zenk, M.H.: Survey of the plant kingdom from the ability to bind heavy metals through phytochelatins. — Z. Naturforsch. 44c: 361–369, 1989.

    Google Scholar 

  • Goyald, R., Seaward, M.R.D.: Metal uptake in terricolous lichens. I. Metal localization within the thallus. — New Phytol. 89: 631–645, 1981.

    Google Scholar 

  • Goyald, R., Seaward, M.R.D.: Metal uptake in terricolous lichens. III. Translocation in the thallus of Peltigera canina. — New Phytol. 90: 85–98, 1982.

    Google Scholar 

  • Hale, K.L., McGrath, S.P., Lombi, E., Stack, S.M., Terry, N., Pickering, I.J., George, G.N., Pilon-Smits, E.A.H.: Molybdenum sequestration in Brassica species. A role for anthocyanins? — Plant Physiol. 126: 1391–1402, 2001.

    Article  PubMed  Google Scholar 

  • Hernandez, E., Olguin, E.J.: Biosorption of heavy metals influenced by the chemical composition of Spirulina sp. (Arthrospira) biomass. — Environ. Technol. 23: 1369–1377, 2002.

    PubMed  Google Scholar 

  • Jorge, R.A., Arruda, P.: Aluminium-induced organic acids exudation by roots of an aluminium-tolerant tropical maize. — Phytochemistry 45: 675–681, 1997.

    Article  Google Scholar 

  • Kobayashi, J.S., Kakizono, T., Nishio, N., Nagai, S., Kurimara, Y., Tsuji, Y.: Antioxidant role of astaxanthin in the green alga Haematococcus pluvialis. — Appl. Microbiol. Biotechnol. 48: 351–356, 1997.

    Article  Google Scholar 

  • Kochian, L.V., Pence, N.S., Letham, D.L.D., Pineros, M.A., Jurandir, V.M., Hoekenga, O.A., Garvin, D.F.: Mechanisms of metal resistance in plants: aluminium and heavy metals. — Plant Soil 247: 109–119, 2002.

    Article  Google Scholar 

  • Kroth, P.G.: Protein transport into secondary plastids and the evolution of primary and secondary plastids. — Int. Rev. Cytol. 221: 191–255, 2002.

    PubMed  Google Scholar 

  • Krupa, Z., Skorzynska, E., Maksymiec, W., Baszynski, T.: Effect of cadmium treatment on the photosynthetic apparatus and its photochemical activities in greening radish seedlings. — Photosynthetica 21: 156–164, 1987.

    Google Scholar 

  • Kupper, H., Kupper, F., Spiller, M.: Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. — J. exp. Bot. 47: 259–266, 1996.

    Google Scholar 

  • Kupper, H., Kupper, F., Spiller, M.: In situ detection of heavy metal substituted chlorophylls in water plants. — Photosynth. Res. 58: 123–133, 1998.

    Article  Google Scholar 

  • Lu, C.M., Chau, C.W., Zhang, J.H.: Acute toxicity of excess mercury on the photosynthetic performance of cyanobacterium, S. platensis-assessment by chlorophyll fluorescence analysis. — Chemosphere 41: 191–196, 2000.

    Article  PubMed  Google Scholar 

  • Luna, C.M., Gonzalez, C.A., Trippi, V.S.: Oxidative damage caused by an excess of copper in oat leaves. — Plant Cell Physiol. 35: 11–15, 1994.

    Google Scholar 

  • Luo, H., Lu, Y., Shi, X., Mao, Y., Delal, N.S.: Chromium (IV)-mediated Fenton-like reaction causes DNA damage: implication to genotoxicity of chromate. — Ann. clin. lab. Sci. 26: 85–191, 1996.

    Google Scholar 

  • Ma, J.F., Ryan, P.R., Delhaize, E.: Aluminium tolerance in plants and the complexing role of organic acids.-Trends Plant Sci. 6: 273–278, 2001.

    Article  PubMed  Google Scholar 

  • Macfie, S.M., Wellbourn, P.M.: The cell wall as a barrier to uptake of metal ions in the unicellular green alga Chlamydomonas reinhardtii (Chlorophyceae). — Arch. environ. Contam. Toxicol. 39: 413–419, 2000.

    Article  PubMed  Google Scholar 

  • Malaga, G., Calmanovici, G., Puntarulo, S.: Oxidative damage to chloroplasts from Chlorella vulgaris exposed to ultraviolet-b radiation. — Physiol. Plant. 101: 455–462, 1997.

    Article  Google Scholar 

  • Malik, D., Sheoran, I.S., Singh, R.: Carbon metabolism in leaves of cadmium treated wheat seedlings. — Plant Physiol. Biochem. 30: 223–229, 1992.

    Google Scholar 

  • Mallick, N.: Copper-induced oxidative stress in the chlorophycean microalga Chlorella vulgaris: response of the antioxidant system. — J. Plant Physiol. 161: 591–597, 2004.

    Article  PubMed  Google Scholar 

  • Mallick, N., Mohn, F.H.: Reactive oxygen species: response of algal cells. — J. Plant Physiol. 157: 183–193, 2000.

    Google Scholar 

  • Mallick, N., Rai, L.C.: Responses of the antioxidant systems of the nitrogen fixing cyanobacterium Anabaena doliolum to copper. — J. Plant Physiol. 155: 146–149, 1999.

    Google Scholar 

  • Mascher, R., Lippmann, B., Holzinger, S., Bergmann, H.: Arsenate toxicity: effects on oxidative stress response molecules and enzymes in red clover plants. — Plant Sci. 163: 961–969, 2002.

    Article  Google Scholar 

  • Meharg, A.A.: Integrated tolerance mechanisms-constitutive and adaptative plant-responses to elevated metal concentrations in the environment. — Plant Cell Environ. 17: 989–993, 1994.

    Google Scholar 

  • Mendoza-Cozalt, D.G., Moreno-Sanchez, R.: Cd2+ transport and storage in the chloroplast of Euglena gracilis. — Biochim. biophys. Acta 1706: 88–97, 2005.

    PubMed  Google Scholar 

  • Mithofer, A., Schulze, B., Boland, W.: Biotic and heavy metal stress response in plants: evidence for common signals. — FEBS Lett. 566: 1–5, 2004.

    Article  PubMed  Google Scholar 

  • Mohanty, N., Mohanty, P.: Cation effects on primary processes of photosynthesis. — In: Singh, R., Sawhney, S.K. (ed.): Advances in Frontier Areas of Plant Biochemistry. Pp. 1–18. Prentice-Hall, New Delhi 1988.

    Google Scholar 

  • Monnet, F., Vaillant, N., Vernay, P., Coudret, A., Sallanon, H., Hitmi, A.: Relationship between PSII activity, CO2 fixation, and Zn, Mn and Mg contents of Lolium perenne under zinc stress. — J. Plant Physiol. 158: 1137–1144, 2001.

    Article  Google Scholar 

  • Mullineaux, P., Karpinski, S.: Signal transduction in response to excess light: getting out of the chloroplast.-Curr. Opin. Plant Biol. 5: 43–48, 2002.

    Article  PubMed  Google Scholar 

  • Mysliwa-Kurdziel, M., Prasad, M.N.V., Strzalka, K.: Photosynthesis in metal stressed plants. — In: Prasad, M.N.V. (ed.): Heavy Metal Stress in Plants: from Molecules to Ecosystems. 2nd Ed. Pp. 146–181. Springer-Verlag, Heidelberg 2003.

    Google Scholar 

  • Mysliwa-Kurdziel, M., Strzalka, K.: Influence of metals on the biosynthesis of photosynthetic pigments. — In: Prasad, M.N.V., Strzalka, K. (ed.): Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants. Pp. 201–228. Kluwer Academic Publ., Dordrecht 2002.

    Google Scholar 

  • Mysliwa-Kurdziel, B., Strzalka, K.: Influence of Cd(II), Cr(VI) and Fe(III) on early steps of deetiolation process in wheat: fluorescence spectral changes of protochlorophyllide and newly formed chlorophyllide. — Agr. Ecosys. Environ. 106: 199–207, 2004.

    Article  Google Scholar 

  • Nagel, K., Adelmeier, U., Voigt, J.: Subcellular distribution of cadmium in the unicellular green alga Chlamydomonas reinhardtii. — J. Plant Physiol. 149: 86–90, 1996.

    Google Scholar 

  • Navari-Izzo, F., Quartacci, M.F.: Phytoremediation of metals. — Minerva Biotech. 13: 73–83, 2001.

    Google Scholar 

  • Ochiai, E.I.: General Principles of Biochemistry of the Elements. — Plenum Press, New York 1987.

  • Olmos, E., Martinez-Solano, J.R., Piqueras, A., Hellin, E.: Early steps in oxidative burst induced by cadmium in cultured tobacco cells (BY-2 line). — J. exp. Bot. 54: 291–301, 2003.

    Article  PubMed  Google Scholar 

  • Ouzounidou, G., Eleftheriou, E.P., Karataglis, S.: Ecophysiological and ultrastructural effects of copper in Thlapsi ochroleucum (Cruciferae). — Can. J. Bot. 70: 947–957, 1992.

    Google Scholar 

  • Paivoke, A.E.A.: Soil pollution alters ATP and chlorophyll contents in Pisum sativum seedlings. — Biol. Plant. 46: 145–148, 2003.

    Article  Google Scholar 

  • Parker, D.L., Mihalick, J.E., Plude, J.L., Plude, M.J., Clark, T.P., Egan, L., Flom, J.J., Rai, L.C., Kumar, H.D.: Sorption of metals by extracellular polymers from the cyanobacterium Microcystis aeruginosa f. flosaquae strain C3-40. — J. appl. Phycol. 12: 219–224, 2000.

    Article  Google Scholar 

  • Patsikka, E., Kairavuo, M., Sersen, F., Aro, E.M., Tyystijarvi, E.: Excess copper predisposes photosystem II to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll. — Plant Physiol. 129: 1–9, 2002.

    Article  Google Scholar 

  • Pellet, D.M., Papernik, L.A., Kochian, L.V.: Multiple aluminium-resistance mechanisms in wheat. — Plant Physiol. 112: 591–597, 1996.

    PubMed  Google Scholar 

  • Pistocchi, R., Mormile, A.M., Guerrini, F., Isani, G., Boni, L.: Increased production of extra-and intracellular metal-ligands in phytoplankton exposed to copper and cadmium. — J. appl. Phycol. 12: 469–477, 2000.

    Article  Google Scholar 

  • Prasad, M.N.V.: Cadmium toxicity and tolerance to vascular plants. — Environ. exp. Bot. 35: 525–545, 1995.

    Article  Google Scholar 

  • Prasad, M.N.V., Strzalka, K.: Impact of heavy metals on photosynthesis. — In: Prasad, M.N.V., Hagenmeyer, J. (ed.): Heavy Metal Stress in Plants-From Molecules to Ecosystems. Pp. 117–138. Springer-Verlag, Berlin 1999.

    Google Scholar 

  • Quartacci, M.F., Pinzino, C., Sgherri, C.L.M., Dalla Vecchia, F., Navari-Izzo, F.: Growth in excess copper induces changes in the lipid composition and fluidity of PSII-enriched membranes in wheat. — Physiol. Plant. 108: 87–93, 2000.

    Article  Google Scholar 

  • Ralph, P.J., Burchett, M.D.: Photosynthesis response of Halophila ovalis to heavy metal stress. — Environ. Pollut. 103: 91–101, 1998.

    Article  Google Scholar 

  • Rauser, W.E.: Structure and function of metal chelators produced by plants. — Cell Biochem. Biophys. 31: 1–30, 1999.

    PubMed  Google Scholar 

  • Rohacek, K., Bartak, M.: Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. — Photosynthetica 37: 339–363, 1999.

    Article  Google Scholar 

  • Romero-Puertas, M.C., Palma, J.M., Gomez, M., Del Rio, L.A., Sandalio, L.M.: Cadmium causes the oxidative modification of proteins in pea plants. — Plant Cell Environ. 25: 677–686, 2002.

    Article  Google Scholar 

  • Salt, D.E., Prince, R.C., Pichering, I.J., Raskin, I.: Mechanisms of cadmium immobilization and accumulation in Indian mustard. — Plant Physiol. 109: 427–433, 1995.

    Google Scholar 

  • Sanita di Toppi, L., Gabbrielli, R.: Response to cadmium in higher plants. — Environ. exp. Bot. 41: 105–130, 1999.

    Article  Google Scholar 

  • Sanita di Toppi, L., Gremigni, P., Pawlik-Skowronska, B., Prasad, M.N.V., Cobbett, C.S.: Responses to heavy metals in plant molecular approach. — In: Sanita di Toppi, L., Pawlik-Skowronska, B. (ed.): Abiotic Stresses in Plants. Pp. 33–156. Kluwer Academic Publ., Dordrecht 2003.

    Google Scholar 

  • Sarvari, E., Fodor, F., Cheh, E., Varga, A., Zaray, G., Zolla, L.: Relationship between changes in ion content of leaves and chlorophyll-protein composition in cucumber under Cd and Pb stress. — Z. Naturforsch. 54c: 746–753, 1999.

    Google Scholar 

  • Schmidt, W.: Mechanisms and regulation of reduction-based iron uptake in plants. — New Phytol. 141: 1–26, 1999.

    Article  Google Scholar 

  • Schoefs, B., Bertrand, M.: Chlorophyll biosynthesis-a review. — In: Pessarakli, M. (ed.): Handbook of Photosynthesis. 2nd Ed. Pp. 37–54. Taylor & Francis, Boca Raton-London-New York 2005.

    Google Scholar 

  • Schoefs, B., Franck, F.: Protochlorophyllide reduction: Mechanisms and evolution. — Photochem. Photobiol. 78: 543–557, 2003.

    Article  PubMed  Google Scholar 

  • Shukla, U.C., Singh, J., Joshi, P.C., Kakkar, P.: Effect of bioaccumulation of cadmium on biomass productivity, essential trace elements, chlorophyll biosynthesis, and macromolecules of wheat seedlings. — Biol. Trace Elem. Res. 92: 257–273, 2003.

    Article  PubMed  Google Scholar 

  • Sicko-Goad, L.: A morphometric analysis of algal response to low dose, short term heavy metal exposure.-Protoplasma 110: 75–86, 1982.

    Article  Google Scholar 

  • Siedlecka, A.: Some aspects of interactions between heavy metals and plant mineral nutrients. — Acta Soc. Bot. Pol. 3: 265–272, 1995.

    Google Scholar 

  • Sobkowiak, R., Rymer, K., Rucinska, R., Deckert, J.: Cadmium-induced changes in antioxidant enzymes in suspension culture of soybean cells. — Acta biochim. pol. 51: 219–222, 2004.

    PubMed  Google Scholar 

  • Solymosi, K., Lenti, K., Mysliwa-Kurdziel, B., Fidy, J., Strzalka, K., Boddi, B.: Depending on concentration, Hg2+ reacts with different components of the NADPH: protochlorophyllide oxidoreductase macrodomains. — Plant Biol. 6: 358–363, 2004.

    Article  PubMed  Google Scholar 

  • Souza, J.F., Rauser, W.E.: Maize and radish sequester excess cadmium and zinc in different ways. — Plant Sci. 65: 1009–1022, 2003.

    Article  Google Scholar 

  • Stiborova, M., Ditrichova, M., Brezinova, A.: Effect of heavy metal ions on growth and biochemical characteristics of photosynthesis of barley and maize seedlings. — Biol. Plant. 29: 453–467, 1987.

    Google Scholar 

  • Stohs, S.J., Bagchi, D.: Oxidative mechanisms in the toxicity of metal ions. — Free Rad. Biol. Med. 18: 321–336, 1995.

    Article  PubMed  Google Scholar 

  • Stoyanova, D., Tchakalova, T.: Cadmium induced ultrastructural changes in shoot apical meristem of Elodea canadensis Rich. — Photosynthetica 37: 47–52, 1999.

    Article  Google Scholar 

  • Subrahmanyam, D., Rathore, V.S.: Influence of manganese toxicity on photosynthesis in ricebean (Vigna umbellata) seedlings. — Photosynthetica 38: 449–453, 2000.

    Article  Google Scholar 

  • Teige, M., Huchzermeyer, B., Schultz, G.: Inhibition of chloroplast ATPsynthase/ATPase is a primary effect of heavy metal toxicity in spinach plants. — Biochem. Physiol. Pflanzen 186: 165–168, 1990.

    Google Scholar 

  • Tewari, R.K., Kumar, P., Sharma, P.N., Bisht, S.S.: Modulation of oxidative stress responsive enzymes by excess cobalt. — Plant Sci. 162: 381–388, 2002.

    Article  Google Scholar 

  • Tumova, E., Sofrova, D.: Response of intact cyanobacterial cells and their photosynthetic apparatus to Cd2+ ion treatment. — Photosynthetica 40: 103–108, 2002.

    Article  Google Scholar 

  • Vaillant, N., Monnet, F., Hitmi, A., Sallanon, H., Coudret, A.: Comparative study of responses in four Datura species to a zinc stress. — Chemosphere (in press), 2004.

  • Van Duijvendijk-Matteoli, M.A., Desmet, G.M.: On the inhibitory action of cadmium on the donor side of Photosystem II in isolated chloroplasts. — Biochim. biophys. Acta 408: 164–168, 1975.

    PubMed  Google Scholar 

  • Vangronsveld, J., Clijsters, H.: Toxic effect of metals. — In: Farango, M.E. (ed.): Plants an d the Chemical Elements. Pp. 149–177. VCH Verslagsgesellschaft, Weinheim 1994.

    Google Scholar 

  • Vassilev, A., Iordanov, I., Chakalova, E., Derin, V.: Effect of cadmium stress on growth and photosynthesis of young barley (Hordeum vulgare) plants. 2. Structural and functional changes in the photosynthetic apparatus.-Bulg. J. Plant Physiol. 21: 12–21, 1995.

    Google Scholar 

  • Vazquez, M.D., Poschenrieder, C., Barcelo, J.: Ultrastructural effects and localization of low cadmium concentrations in bean roots. — New Phytol. 120: 215–226, 1992.

    Google Scholar 

  • Vazquez, M.D., Poschenrieder, C., Barcelo, J., Baker, A.J.M., Hatton, P., Cope, G.H.: Compartmentation of zinc in roots and leaves of the zinc hyperaccumulator Thlaspi caerulescens. — Bot. Acta 107: 243–250, 1994.

    Google Scholar 

  • Vogeli-Lange, R., Wagner, G.L.: Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves. Implication of a transport function for cadmium-binding peptides. — Plant Physiol. 92: 1086–1093, 1990.

    Google Scholar 

  • Voigt, J., Nagel, K.: The donor side of photosystem II is impaired in a Cd2+-tolerant mutant strain of the unicellular green alga Chlamydomonas reinhardtii. — J. Plant Physiol. 159: 941–950, 2002.

    Article  Google Scholar 

  • Voigt, J., Nagel, K., Wrann, D.: A cadmium-tolerant Chlamydomonas mutant strain impaired in photosystem II activity. — J. Plant Physiol. 153: 566–573, 1998.

    Google Scholar 

  • Wallace, A., Wallace, G.A., Cha, J.W.: Some modifications in trace metal toxicities and deficiencies in plants resulting from interactions with other elements and chelating agents: the special case of iron. — J. Plant Nutr. 15: 1589–1598, 1992.

    Google Scholar 

  • Williams, L.E., Pittman, J.K., Hall, J.L.: Emerging mechanisms for heavy metal transport in plants. — Biochim. biophys. Acta 1465: 104–126, 2000.

    PubMed  Google Scholar 

  • Wisniewski, L., Dickinson, N.M.: Toxicity of copper to Quercus robur (English Oak) seedlings from a copper-rich soil. — Environ. exp. Bot. 50: 99–107, 2003.

    Google Scholar 

  • Wu, F., Zhang, G., Dominy, P.: Four barley genotypes respond differently to cadmium: lipid peroxidation and activities of antioxidant capacity. — Environ. exp. Bot. 50: 67–78, 2003.

    Article  Google Scholar 

  • Yruela, I., Montoya, G., Picorel, R.: The inhibitory mechanism of Cu(II) on the Photosystem II electron transport from higher plants. — Photosynth. Res. 33: 227–233, 1992.

    Article  Google Scholar 

  • Zenk, M.H.: Heavy metal detoxification in plants-A review. — Gene 179: 21–30, 1996.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bertrand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertrand, M., Poirier, I. Photosynthetic organisms and excess of metals. Photosynthetica 43, 345–353 (2005). https://doi.org/10.1007/s11099-005-0058-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-005-0058-2

Additional key words

Navigation