Skip to main content

Advertisement

Log in

Bioethanol production from seagrass waste, through fermentation process using cellulase enzyme isolated from marine actinobacteria

  • Research Articles
  • Published:
Vegetos Aims and scope Submit manuscript

Abstract

Seagrass wrack can be utilized as a raw material to produce bioethanol, a sustainable biofuel, to overcome fossil fuel exhaustion and ecological issues. The present investigation focused on the production of bioethanol from seagrass wracks, utilizing acid and enzyme hydrolysis. The results reveal that the ethanol production (0.78 ml  g−1) from the seagrass species Cymodocea serrulata was maximum than C. rotundata (0.72 ml g−1) hydrolyzed by cellulase enzyme isolated from the marine actinobacterial strain. This investigation gives acceptable proof that the conversion of seagrass wrack to bioethanol could be a practical ecological solution for managing undesirable seagrass wrack, balancing carbon emission, and producing an economically valuable product. The results showed that Cymodocea species could be used as a substrate for bioethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aarthi C, Srinivasan M, Sivakumar K, Thangaradjou T (2009) Screening of carbohydrate degrading enzyme producing thermophilic actinobacteria from the mud volcano sediments of Andaman. Natl Acad Sci Lett 32(7&8):213–218

    Google Scholar 

  • Abada EA, Masrahi YS, Al-Abboud M, Alnashiri HM, El-Gayar KE (2018) Bioethanol production with cellulase enzyme from Bacillus cereus isolated from sesame seed residue from the Jazan region. BioResources 13(2):3832–3845

    Article  CAS  Google Scholar 

  • Abdel-Shakour EH, Roushdy MM (2009) An Investigation for cellulase activity of a Novel Antibiotic producing Streptomyces sp. Isolate H−1 from Egyptian Mangrove Sediment. Academia Arena 5:1

    Google Scholar 

  • Abdulla R, Ariffin Z (2016) Quantitative Assessment of Seagrass as Bioethanol Feedstock. Transact Sci Technol 3(2):361–366

    Google Scholar 

  • Ahmed FM, Rahman SR, Gomes DJ (2012) Saccharification of sugarcane bagasse by enzymatic treatment for bioethanol production. Malay J Microbiol 8(2):97–103

    CAS  Google Scholar 

  • Alam MZ, Manclur MA, Anwar MN (2004) Isolation, purification and characteriazation of cellulolytic enzymes produced by the isolate Streptomyces omiyaensis. Pakistan J Biol Sci 7(10):1647–1653

    Article  Google Scholar 

  • Alvarado-Morales M, Boldrin A, Karakashev DB, Holdt SL, Angelidaki I, Astrup T (2013) Life cycle assessment of biofuel production from brown seaweed in Nordic conditions. Bioresour Technol 129:92–99

    Article  CAS  PubMed  Google Scholar 

  • Arenskötter M, Baumeister D, Berekaa MM, Pötter G, Kroppenstedt RM et al (2001) Taxonomic characterization of two rubber degrading bacteria belonging to the species Gordonia polyisoprenivorans and analysis of hyper variable regions of 16S rDNA sequences. FEMS Microbiol Lett 205:277–282

    Article  PubMed  Google Scholar 

  • Arunachalam R, Wesely EG, George J, Annadurai G (2010) Novel approaches for identification of Streptomyces noboritoensis TBG-V20 with cellulase production. Curr Res Bacteriol 3(1):15–26

    Article  CAS  Google Scholar 

  • Au KS, Chan KY (1987) Purification and properties of endo−1, 4-b-glucanase from Bacillus subtilis. J Gen Microbiol 133:2155–2162

    CAS  Google Scholar 

  • Banerjee S, Mudliar S, Sen R, Giri B, Satpute D, Chakrabarti T, Pandey RA (2010) Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuels, Bioproducts and Biorefining: Innovation for a sustainable economy 4(1):77–93

  • Bligh EG, Dyer W (1959) A rapid method of total lipid extraction and purification. Can J Physiol 37:911–917

    CAS  Google Scholar 

  • Caudy AA (2017) Spectrophotometric analysis of ethanol and glucose concentrations in yeast culture media. Cold Spring Harbor Protocols 2017(9):pdb-prot089102

  • Chellapandi P, Jani HM (2008) Production of endoglucanase by the native strains of Streptomyces isolates in submerged fermentation. Braz J Microbiol 39(1):122–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coupland GT, Duarte CM, Walker DI (2007) High metabolic rates in beach cast communities. Ecosystems 10:1341–1350

    Article  CAS  Google Scholar 

  • Del Campo I, Alegria I, Zazpe M, Echeverria M, Echeverria I (2006) Dilute acid hydrolysis pre-treatment of agri-food wastes for bioethanol production. Ind Crops Prod 24:214–221

    Article  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Ehrman CI, Himmel ME (1994) Simultaneous Saccharification and Fermentation of Pretreated Biomass Improving Mass Balance Closure. Biotechnol Tech 8(2):99–104

    Article  CAS  Google Scholar 

  • Eisentraut A (2010) Sustainable production of second-generation biofuels: potential and perspectives in major economies and developing countries

  • Elfalah HWA, Ahmad A, Usup G (2013) Anti-microbial properties of secondary metabolites of marine Gordonia tearrae extract. J Agric Sci 5:94–101

    Google Scholar 

  • George SP, Ahmad A, Rao MB (2001) Studies on carboxymethyl cellulase produced by an alkalothermophilic actinomycete. Bioresour Technol 77:171–175

    Article  CAS  PubMed  Google Scholar 

  • Gobalakrishnan R (2013) Ecology, diversity and bioelectricity potential of marine actinobacteria from the Havelock island of the Andamans, India. Thesis PhD, Annamalai University, India. pp 230

  • Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1(5):763–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hapwood DA, Bibb MJ, Charter KF, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CP, Ward JM, Schremff H (1985) Genetic Manipulation of Streptomyces: A Laboratory Manual. The. John Innes Foundation, Norwich, p 356

    Google Scholar 

  • Haq I, Mukhtar H, Umber H (2006) Production of protease by Penicillium chrysogenum through optimization of environmental conditions. J Agri Soc Sci 2(1):23–25

    Google Scholar 

  • Herrera S (2004) Industrial biotechnology-a chance at redemption. Nat Biotechnol 22:671–675

    Article  CAS  PubMed  Google Scholar 

  • Ishaque M, Kluepfel D (1980) Cellulase complex of a mesophillic Streptomyces strain. Can J Microbiol 26:183–189

    Article  CAS  PubMed  Google Scholar 

  • Jang HD, Chen KS (2003) Production and characterization of thermostable cellulases from Streptomyces transformant T3−1. World J Microbiol Biotechnol 19:263–268

    Article  CAS  Google Scholar 

  • Kathiresan K, Balagurunathan R, Masilamaiselvam M (2005) Fungicidal activity of marine actinomycetes against phyotopathogenic fungi. Indian J Biotechnol 4:271–276

    Google Scholar 

  • Kirkman H, Kendrick GA (1997) Ecological Significance and Commercial Harvesting of Drifting and Beach-Cast Macro-Algae and Seagrasses in Australia: A Review. J Appl Phycol 9:311–326

    Article  Google Scholar 

  • Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Larsson S, Palmqvist E, Hagerdal BH, Tengborg C, Stenberg K, Zacchi G, Nilvebrant NO (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb Technol 24:151–159

    Article  CAS  Google Scholar 

  • Lin Z, Marett L, Hughen RW, Flores M, Forteza I et al (2013) Neuroactive diol and acyloin metabolites from cone snail-associated bacteria. Bioorg Med Chem Lett 23:4867–4869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Trevathan-Tackett SM, Lewis CJE, Ollivier QR, Jiang Z, Huang X, Macreadie PI (2019) Beach-cast seagrass wrack contributes substantially to global greenhouse gas emissions. J Environ Manag 231:329–335

    Article  CAS  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin Phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  • Macreadie PI, Trevathan-Tackett SM, Baldock JA, Kelleway JJ (2017) Converting beach-cast seagrass wrack into biochar: a climate-friendly solution to a coastal problem. Sci Total Environ 574:90–94

    Article  CAS  PubMed  Google Scholar 

  • Malça J, Freire F (2006) Renewability and life-cycle energy efficiency of bioethanol and bio-ethyl tertiary butyl ether (bioETBE): assessing the implications of allocation. Energy 31(15):3362–3380

    Article  CAS  Google Scholar 

  • Manivasagan P, Gnanam S, Sivakumar K, Thangaradjou T, Vijayalakshmi S, Balasubramanian T (2010) Studies on diversity of marine actinobacteria from Tamilnadu Part of Bay of Bengal, India. Libyan Agric Res Center J Int 1(6):362–374

    Google Scholar 

  • Mandels M, Reese ET (1965) Inhibition of cellulases. Annu Rev Phytopathol 3:85–102

    Article  CAS  Google Scholar 

  • Mateo MA, Cebrián J, Dunton K, Mutchler T (2006) Carbon flux in seagrass ecosystems. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: Biology, Ecology and Conservation. Springer, Netherlands, pp 159–192

    Google Scholar 

  • Meena B, Rajan LA, Vinithkumar NV, Kirubagaran R (2013) Novel marine actinobacteria from emerald Andaman & Nicobar Islands: a prospective source for industrial and pharmaceutical byproducts. BMC Microbiol 13(145):2–17

    Google Scholar 

  • Meenakshi K, Rajkumar J, Salah M, Sivakumar K (2015) Cellulase production by a manglicolous actinobacterium: Optimization, characterization and partial purification. J Sci Transfer Environ Technol 8(4):173–177

    Google Scholar 

  • Meinita MDN, Kang J, Jeong Y, Koo GT, Park HM, Hong YK (2012) Bioethanol production from the acid hydrolysate of the carrageenophyte Kappaphycus alvarezii (cottonii). J Appl Phycol 24(4):857–862

    Article  CAS  Google Scholar 

  • Munajad A, Subroto C (2018) Fourier transform infrared (FTIR) spectroscopy analysis of transformer paper in mineral oil-paper composite insulation under accelerated thermal aging. Energies 11(2):364. https://doi.org/10.3390/en11020364

  • Murugan M, Srinivasan M, Sivakumar K, Sahu MK, Kannan L (2007) Characterization of an actinomycete isolated from the estuarine finfish, Mugil cephalus Lin. (1758) and its optimization for cellulase production. J Sci Ind Res 66:383–389

  • Nonomura H (1974) Key for classification and identification of 458 species of Streptomycetes included in ISP. J Ferment Technol 52:78–92

    Google Scholar 

  • Pfeifer L, Classen B (2020) The Cell Wall of Seagrasses: Fascinating, Peculiar and a Blank Canvas for Future Research. Front Plant Sci 11:588754. doi:https://doi.org/10.3389/fpls.2020.588754

    Article  PubMed  PubMed Central  Google Scholar 

  • Philippsen A (2013) Energy Input, Carbon Intensity, and Cost for Ethanol Produced from Brown Seaweed. Ph.D. Thesis, University of Victoria, Victoria, BC, Canada

  • Pradhan S, Mishra BB, Rout S (2015) Screening of novel actinomycetes from Near Lake Shore sediments of the Chilika Lake, Odisha, India. Int J Curr Microbiol App Sci 4(8):66–82

    CAS  Google Scholar 

  • Pradeeba M, Dilipan E, Nobi EP, Thangaradjou T, Sivakumar K (2011) Evaluation of seagrasses for their nutritional value. Indian J Geo-Mar Sci 40(1):105–111

    Google Scholar 

  • Premalatha N, Gopal NO, Arul Jose P et al (2015) Optimization of cellulase production by Enhydrobacter sp. ACCA2 and its application in biomass saccharification. Front Microbiol 6:1–11

    Article  Google Scholar 

  • Rajkumar J, Swarnakumar NS, Sivakumar K, Thangaradjou T, Kannan L (2012) Actinobacterial diversity of mangrove environment of the Bhitherkanika mangroves, East coast of Orissa, India. Int J Sci Res Publ 2:1–6

    Google Scholar 

  • Ramesh S, Mathivanan N (2009) Screening of marine actinomycetes isolated from the Bay of Bengal, India for antimicrobial activity and industrial enzymes. World J Microbiol Biotechnol 25:2103–2111

    Article  CAS  Google Scholar 

  • Ravikumar S, Gokulakrishnan R, Kanagavel M, Thajuddin N (2011) Production of biofuel ethanol from pretreated seagrass by using Saccharomyces cerevisiae. Indian J Sci Technol 4(9):1087–1089

    Article  CAS  Google Scholar 

  • Rodriguez-Chong A, Ramirez JA, Garrote G, Vazquez M (2004) Hydrolysis of sugarcane bagasse using nitric acid: A kinetic assessment. J Food Eng 61:143–152

    Article  Google Scholar 

  • Romanowska I, Kwapisz E, Mitka M, Bielecki S (2010) Isolation and preliminary characterization of a respiratory nitrate reductase from hydrocarbon-degrading bacterium Gordonia alkanivorans S7. J Ind Microbiol Biotechnol 37:625–629

    Article  CAS  PubMed  Google Scholar 

  • Sahu MK, Sivakumar K, Kannan L (2007) Alkaline protease production by an actinomycete strain isolated from the tiger shrimp, Penaeus monodon (Fabricius, 1798). Nat Acad Sci Lett 30: 61–65

  • Senthilkumar S, Sivakumar K, Kannan L (2005) Mercury resistant halophilic actinomycetes from the salt marsh environment of Vellar estuary. Southeast Coast of Indian J Aquat Biol 20:141–145

    CAS  Google Scholar 

  • Shanmughapriya S, Seghalkirn G, Selvin J, Anto Thamas T, Rani C (2009) Optimization, purification and characterization of extracellular mesophilic alkaline cellulase from sponge-associated Marinobacter sp. MSI032. Appl Biochem Biotechnol 14:67–75

    CAS  Google Scholar 

  • Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) “Determination of Extractives in Biomass,” Tech. Rep. NREL/TP-510-42619, National Renewable Energy Laboratory, Golden, Colo, USA

  • Sowani H, Kulkarni M, Zinjarde S (2018) An insight into the ecology, diversity and adaptations of Gordonia species. Crit Rev Microbiol 44:1–21

    Article  Google Scholar 

  • Stobdan T, Sinha A, Singh RP, Adhikari DK (2008) Degradation of pyridine and 4-methylpyridine by Gordonia terrea IIPN1. Biodegradation 19:481–487

    Article  CAS  PubMed  Google Scholar 

  • Syed NNF, Zakaria MH, Bujang JS (2016) Fiber characteristics and papermaking of seagrass using Hand-beaten and blended pulp. Bioresources 11:5358–5380

    Article  CAS  Google Scholar 

  • Thangaradjou T, Raja S, Subhashini P (2011) Seagrass as fertiliser. Seagrass-Watch 43:26–27

    Google Scholar 

  • Torbatinejad NM, Sabine JR (2001) Laboratory evaluation of some marine plants on South Australian Beaches. J Agric Sci Technol 3:91–100

    Google Scholar 

  • Vijayakumar R, Muthukumar C, Thajuddin N, Panneerselvam A, Saravanamuthu R (2007) Studies on the diversity of actinomycetes in the Palk Strait region of Bay of Bengal, India. Actinomycetologica 21:59–65

    Article  CAS  Google Scholar 

  • Vinogradova SP, Kushnir SN (2003) Biosynthesis of hydrolytic enzymes during cocultivation of macro and micromycetes. Appl Biochem Microbiol 39:573–575

    Article  CAS  Google Scholar 

  • Viola E, Cardinale M, Santarcangelo R, Villone A, Zimbardi F (2008) Ethanol from eel grass via steam explosion and enzymatic hydrolysis. Biomass Bioenergy 32(7):613–618

    Article  CAS  Google Scholar 

  • Vyas A, Deepak V, Vyas KM (2005) Production and optimization of cellulases on pretreated groundnut shell by Aspergillus terreus AV49. J Sci Ind Res 64:281–286

    CAS  Google Scholar 

  • Ward AC, Bora N (2006) Diversity and biogeography of marine actinobacteria. Curr Opin Microbiol 9:279–286

  • Xie Y, Zhou S, Xu Y, Wu W, Xia W, Zhang R, Huang D, Huang X (2020) Gordonia mangrovi sp. nov. a novel actinobacterium isolated from mangrove soil in Hainan. Int J Systematic Evol Microbiol 70(8):4537–4543. https://doi.org/10.1099/ijsem.0.004310

Download references

Acknowledgements

All authors are thankful to the Department of Botany and Microbiology, AVVM. Pushpam College (Autonomous), Tanjore, and Department of Microbiology, Bharathidasan University, Tiruchirappalli. Dr. J. Rajkumar (File no. PDF/2017/002538) was grateful to SERB-DST for providing fund through NPDF program. The contents and views reported in this manuscript are of individual authors and not reflect the views and positions of the institutions they belong.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization (JR, and ED); Fieldwork and data collection (JR, ED and MR); Laboratory experiment, analysis of data, interpretation, and statistical analysis (JR, ED and MR); Preparation of manuscript (JR, and ED); Review & editing (AP and NT); Resources and Supervision (AP and NT).

Corresponding authors

Correspondence to J. Rajkumar or E. Dilipan.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 235 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajkumar, J., Dilipan, E., Ramachandran, M. et al. Bioethanol production from seagrass waste, through fermentation process using cellulase enzyme isolated from marine actinobacteria. Vegetos 34, 581–591 (2021). https://doi.org/10.1007/s42535-021-00239-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42535-021-00239-5

Keywords

Navigation