Skip to main content
Log in

Bioethanol production from the acid hydrolysate of the carrageenophyte Kappaphycus alvarezii (cottonii)

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Seaweed resources can be used as raw materials to produce bioethanol, a renewable biofuel, to overcome fossil fuel depletion and environmental problems. Red seaweeds possess high amount of bioethanol-producible carbohydrates. Among 55 species tested, the carrageenophyte Kappaphycus alvarezii (also known as cottonii) was selected as the best resource for bioethanol production. This species is one of the most abundant and easily cultured red seaweeds. The main components of carrageenan are d-galactose-4-sulfate and 3,6-anhydro-d-galactose-2-sulfate, which are potentially fermentable d-typed carbohydrates. The seaweed powder was hydrolyzed with 0.2 M sulfuric acid and fermented with brewer’s yeast. The ethanol yield from the K. alvarezii hydrolysate was 0.21 g g−1-galactose, which corresponded to a 41% theoretical yield. It revealed a relative ethanol production of 66% comparing to that of pure galactose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams MJ, Gallagher JA, Donnison IS (2009) Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. J Appl Phycol 21:569–574

    Article  CAS  Google Scholar 

  • Ahmedna M, Marshall WE, Rao RM (2000) Surface properties of granular activated carbons from agricultural by-products and their effects on raw sugar decolorization. Biores Technol 71:103–112

    Article  CAS  Google Scholar 

  • Chandel AK, Chan ES, Ravinder R, Narasu ML, Rao VL, Ravindra P (2007) Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnol Mol Biol Rev 2:14–32

    Google Scholar 

  • Chaplin MF (1986) Monosaccharide. In: Chaplin MF, Kennedy JF (eds) Carbohydrate analysis: a practical approach. IRC Press, Oxford, pp 1–36

    Google Scholar 

  • Chapman VJ, Chapman DJ (1980) Seaweeds and their uses. Chapman and Hall, London

    Book  Google Scholar 

  • de Ruiter GA, Rudolph B (1997) Carrageenan biotechnology. Trends Food Sci Technol 8:389–395

    Article  Google Scholar 

  • Goh CS, Lee KT (2010) A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development. Renew Sustain Energ Rev 14:842–848

    Article  CAS  Google Scholar 

  • Horn SJ, Aasen IM, Østgaard K (2000) Ethanol production from seaweed extract. J Ind Microbiol Biotechnol 25:249–254

    Article  CAS  Google Scholar 

  • John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Biores Technol 102:186–193

    Article  CAS  Google Scholar 

  • Jol CN, Neiss TG, Penninkhof B, Rudolph B, Ruiter GAD (1999) A novel high-performance anion-exchange chromatographic method for the analysis of carrageenans and agars containing 3,6-anhydrogalactose. Anal Biochem 268:213–222

    Article  PubMed  CAS  Google Scholar 

  • Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26

    Article  PubMed  CAS  Google Scholar 

  • Kochert G (1978) Carbohydrate determination by the phenol-sulfuric acid method. In: Hellebust JA, Craigie JS (eds) Handbook of phycological methods, vol II, Physiological and biochemical methods. Cambridge University Press, Cambridge, pp 95–97

    Google Scholar 

  • Larsson S, Palmqvist E, Hagerdal BH, Tengborg C, Stenberg K, Zacchi G, Nilvebrant NO (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb Technol 24:151–159

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • McHugh D (2003) A guide to the seaweed industry.: Fisheries Technical Paper. FAO, Rome

    Google Scholar 

  • Miyafuji H, Danner H, Neureiter M, Thomasser C, Bvochora J, Szolar O, Braun R (2003) Detoxification of wood hydrolysates with wood charcoal for increasing the fermentability of hydrolysates. Enzyme Microb Technol 32:396–400

    Article  CAS  Google Scholar 

  • Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bio Technol 93:1–10

    Article  CAS  Google Scholar 

  • Neish IC (2008) Good agronomy practices for Kappaphycus and Eucheuma. Seaplant.net Foundation, Indonesia

    Google Scholar 

  • Pambudi L, Meinita MDN, Ariyati RW (2010) Seaweed cultivation in Indonesia: recent status. Mar Biosci Biotechnol 4:6–10

    Google Scholar 

  • Percival E (1979) The polysaccharide of green, red and brown seaweeds: their basic structure, biosynthesis and function. Br Phycol J 14:103–117

    Article  Google Scholar 

  • Pereira L, Amado AM, Critchley AT, van de Velde F, Riberro-Claro PJA (2009) Identification of selected seaweed polysaccharides (phycocolloids) by vibrational spectroscopy (FTIR-ATR and FT-Raman). Food Hydrocolloid 23:1903–1909

    Article  CAS  Google Scholar 

  • Prescott SC, Dun CG (1959) Industrial microbiology. McGraw-Hill, New York

    Google Scholar 

  • Radin NS (1981) Extraction of lipids with hexane-isopropanol. Method Enzymol 72:5–7

    Article  CAS  Google Scholar 

  • Wi SG, Kim HJ, Mahadevan SA, Yang DJ, Bae HJ (2009) The potential value of the seaweed Ceylon moss (Gelidium amansii) as an alternative bioenergy resource. Bioresour Technol 100:6658–6660

    Article  PubMed  CAS  Google Scholar 

  • Yun EJ, Shin MH, Yoon JJ, Kim YJ, Choi IG, Kim KH (2011) Production of 3,6-anhydro-L-galactose from agarose by agarolytic enzymes of Saccharophagus degradans 2–40. Process Biochem 46:88–93

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the Samsung Advanced Institute of Technology, Korea. We thank the Brain Busan 21 program for graduate support (MDNM, JYK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Ki Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meinita, M.D.N., Kang, JY., Jeong, GT. et al. Bioethanol production from the acid hydrolysate of the carrageenophyte Kappaphycus alvarezii (cottonii). J Appl Phycol 24, 857–862 (2012). https://doi.org/10.1007/s10811-011-9705-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-011-9705-0

Keywords

Navigation