Abstract
The superfluid density \(n_{s}(T)\) of a superconductor is calculated based on the generalized Bose–Einstein condensation (GBEC) theory that addresses a fullyinteracting ternary bosonfermion gas mixture of free electrons as fermions, plus twoelectron Cooper pairs (2eCPs) and also, explicitly, twohole Cooper pairs (2hCPs), both as bosons. Here we consider two special cases (i) 100%–0% (i.e., with no condensed 2hCPs) and (ii) 0%–100% (i.e., with no condensed 2eCPs). Subsumed in GBEC are the Bardeen–Cooper–Schrieffer (BCS) and Bose–Einstein condensation (BEC) theories along with the BCSBEC crossover theory extended with 2hCPs. We find that in the weakcoupling regime \(n_{s}(0)\) agrees with data from the Uemura et al. (2004) graph for several elemental SCs by taking in 3D with a quadratic energydispersion relation while in 2D with a linear relation are much too far below the data. In the strongcoupling regime the linear behavior of critical temperature \(T_{c}\) vs \(n_{s}(0)\) obtained here is just as Božović et al. (2016) found. However, in 2D with a linear relation accounting for 0%–100%, \(n_{s}(T)/n_{s}(0)\) compares well with some high\(T_{c}\)cuprate SC data between the two coupling regimes.
Superfluid density of a superconductor (SC) is calculated with the BCSBose crossover extended with twohole of Cooper pairs. In the weakcoupling extreme in 3D we found good agreement with conventional SCs with quadratic dispersion relation. For highT\(_c\) SCs (cuprates) in the intermediate coupling in 2D with a linear relation; results compare well with the data.
Introduction
Superfluidity in liquid \(^{4}\)He was reported in 1938 by Kapitza [1] and independently by Allen and Misener [2] who for the first time found that the viscosity of \(^{4}\)He drops below \(T_{\lambda }=2.17\) K. Almost 20 years before the Bardeen–Cooper–Schrieffer (BCS) [3] theory, Kapitza also found that this phenomenon is analogous to that of a superconductor (SC). In turn, London [4] proposed that \(^{4}\)He is in a phase II, i.e., below \(T_{\lambda }\), and has a Bose–Einstein condensation (BEC) behavior. The calculated BEC critical temperature of He II is \(T_{BEC}=3.1\) K and so is thus slightly higher than \(T_{\lambda }\). Landau [5,6,7] introduced the concept of two fluids for \(^{4}\)He but with no connection with a BEC. Bogoliubov [8] had already shown that in a degenerate Bose gas with weak interactions there is really a BEC. Also, the existence of superfluidity turns out to be linked with BEC [9] —and indeed with Bose statistics.
In the early 1970s Leggett [10, 11], based on experiments by Osheroff et al. [12], noted that \(^{3}\)He atoms could in fact form BCSlike pairs. He concluded that the liquid \(^{3}\)He phase must show [13] all phenomena associated with a BCSlike phase; he later derived [14] two basic crossover equations at \(T=0\) for any manyfermion system. In 1964 Schrieffer [15] was apparently the first to state that one must solve two equations, a gaplike and a number equation. This was perhaps the first BCSBose crossover theory. It was further developed by Keldysh [16] (1965), Popov [17] (1966), Labbé et al. [18] (1967), Eagles [19] (1969), Miyake [20] (1983), Nozières [21] (1985), Ranninger et al. [22] (1988), Randeria et al. [23, 24] (1989), Van der Marel [25] (1990), BarYam [26, 27] (1991), Drechsler and Zwerger [28] (1992), Haussmann [29] (1993), Pistolesi and Strinati [30] (1996) among others.
The London penetration depth \(\lambda _{L}=(m_{e}/\mu _{0}n_{s}e^{2})^{1/2}\) is the distance below a SC surface where an external magnetic field B vanishes like \(B=B_{0}\exp (x/\lambda _{L})\) where x is the depth inside the SC. Here \(m_{e}\) is the electron mass, e the elementary electron charge, \(\mu _{0}\) the magnetic susceptibility and \(n_{s}\) the superconducting electronnumber density. The latter is linked with the “superelectrons”[31] of the Landau theory. In 1989 Uemura et al. [32] found a linear relationship between the critical temperature \(T_{c}\) of a SC and its superfluid number density \(n_{s}\). It was concluded [33] that, in general, the magnitude of \(T_{c}\) depends on \(n_{s}(T)\) rather than on the interelectronic coupling strength as long claimed to be true. Later, in 2016 Božović et al. [34] came to agree with these conclusions. The wellknown Uemura graph [32, 33] relates the \(T_{c}\) of a SC with its superfluid numberdensity as \(n_{s}^{2/3}/(m^{*}/m_{e})\) where \(m^{*}\) is the effective electron mass and \(m_{e}\) its bare mass. Uemura et al. [32] [33] then suggested a crossover theory to correctly describe SCs. We refer to the crossover “BCSBose” [35, 36] instead of the more common “BCSBEC” since a BEC cannot occur in either two dimensions (2D) nor in one dimension (1D) while bosons can form in both instances.
Here we corroborate the Kapitza concept that superfluidity is analogous with superconductivity, by calculating the SC superfluid density \(n_{s}(T)\) for \(T\le T_{c}\) based on the generalized Bose–Einstein condensation (GBEC) theory [37,38,39,40,41] that includes as a special case the BCSBose crossover theory and also an extended version with twohole Cooper pairs (2hCPs) [42] along with the more common twoelectron Cooper pairs (2eCPs) ones.
In Sect. 2 the GBEC theory is recalled as it leads to the BCSBose extended crossover equations as a special case; in Sect. 3 the superfluid density \(n_{s}(T)\) is introduced for two kinds of superfluids, one for 2eCPs and another for 2hCPs, the latter with an opposite charge carrier sign with respect to 2eCPs. Here we report calculated \(n_{s}(T)\) results in 3D with a boson quadraticdispersion relation and in 2D with a lineardispersion one. Comparisons are made with experimental data in 3D and 2D for some elemental and cuprate SCs. In Sect. 4 some discussion and our conclusions with future work are mentioned.
Generalized Bose–Einstein condensation theory
The GBEC theory starts from an ideal, noninteracting bosonfermion (BF) ternary gas mixture of free/unbound fermions (here electrons) plus 2eCPs and 2hCPs as bosons. To this one adds specific BF vertex interactions [37, 38] leading to a fullyinteracting gas defined by the hamiltonian \(H=H_{0}+H_{int}\) where \(H_{0}\) stands for the ideal ternary gas and \(H_{int}\) for the BF interactions.
The ideal ternary gas hamiltonian is
here \({\mathbf {K}}\equiv {\mathbf {k}}_{1}+{\mathbf {k}}_{2}\) is the centerofmass momentum (c.m.m.) wavevector of two fermions, where \(K \equiv \vert {\mathbf {K}}\vert\), and \({\mathbf {k}}\equiv \frac{1}{2}({\mathbf {k}}_{1}{\mathbf {k}}_{2})\) as their relative wavevector while \(\epsilon _{k_{1}}\equiv \hbar ^{2}k_{1}^{2}/2m\) is the energy of a single fermion and \(E_{\pm }(K)=E_{\pm }(0)+\hbar ^{2}K^{2}/4m\) the bosonic 2e/2hCPs phenomenological energies with \(E_{\pm }(0)\) the bosonic energies for \(K=0\). Here \(a_{{\mathbf {k}} _{1},s_{1}}^{\dagger }(a_{{\mathbf {k}}_{1},s_{1}}^{{}})\) are the creation (annihilation) fermion operators, and \(b_{{\mathbf {K}}}^{\dagger }\)(\(b_{ {\mathbf {K}}}^{{}}\)) and \(c_{{\mathbf {K}}}^{\dagger }\)(\(c_{{\mathbf {K}}}^{{}}\)) the boson operators for 2e/2hCPs. CPs are treated here as actual bosons in contrast with the BCS [3] “correlated” pairs which depend on their relative wavevector \({\mathbf {k}}\) and also on their total \({\mathbf {K}}\) wavevector whereas the original CPs [43] depend only on \({\mathbf {K}}\) [40, 41]. The former do not satisfy Bose commutation relations [3] but the latter are consistent with Bose statistics [40, 41]. The interaction hamiltonian \(H_{int}\) has four BF interaction vertices, one with twofermion/one boson creationannihilation operators representing how the unbound electrons (subindex \(+\)) or holes (subindex −) combine to form 2e/2hCPs in any ddimensional system of size L. Thus
where \(f_{\pm }(k)\) are the BF interaction functions defined in Refs. [37, 38] for electrons/holes. Note that \(H_{int}\) is reminiscent of the Fröhlich interaction hamiltonian (or Dirac in QED [44] p. 36) involving twofermion operators with a oneboson operator, but with two kinds of CPs instead of phonons/photons. Contrasting with Fröhlich and Dirac, there is no conservation law for the number of unbound electrons, i.e., \([H_{int},\sum _{{\mathbf {k}}_{1},s_{1}}\epsilon _{{\mathbf {k}}_{1}}a_{ {\mathbf {k}}_{1},s_{1}}^{\dagger }a_{{\mathbf {k}}_{1},s_{1}}^{{}}]\ne 0\).
One can consider a simpler reduced \(H_{red}\) that may be written by neglecting nonzero K values and ignoring those bosons with \(K\ne 0\) in \(H_{int}\)—but not also in \(H_{0}\) as assumed in BCS theory. Applying the Bogoliubov recipe of replacing the zeroK creation operators \(b_{{\mathbf {0}}}^{\dagger }\) and \(c_{{\mathbf {0}}}^{\dagger }\) for the 2e/2hCP bosons by cnumbers \(\sqrt{N_{0}}\) and \(\sqrt{M_{0}}\) with \(N_{0}\) and \(M_{0}\) the numbers of 2e/2hCP \(K=0\) bosons. Then, using the BogoliubovValatin transformation [45, 46] allows exactly diagonalizing [39] the reduced dynamical operator \({\hat{H}}_{red}\mu {\hat{N}}\) with \({\hat{N}}\) the totalelectronnumber operator and \(\mu\) a Lagrange multiplier. Bringing the neglected c.m.m. \(K\ne 0\) terms back into the picture was recently implemented with twotimeGreenfunction techniques [47,48,49,50].
The thermodynamic (or Landau) potential of the grandcanonical statistical ensemble is now \(\Omega (T,L^{d},\mu ,N_{0},M_{0}) = k_{B}T\ln \left[ \mathrm {Tr}(\exp \{\beta ({\hat{H}}_{red}\mu {\hat{N}})\})\right]\) where Tr means “trace,” \(L^{d}\) is the system volume with d = 3, 2, 1 and \(\beta \equiv 1/k_{B}T\) with \(k_{B}\) the Boltzmann constant and \(\mu\) the electronic chemical potential. Thus \(\Omega\) can now be evaluated explicitly. The Helmholtz free energy is then \(F(T,L^{d},\mu ,N_{0},M_{0})\equiv \Omega (T,L^{d},\mu ,N_{0},M_{0})+\mu N\). Taking the negative partial derivative of \(\Omega\) with respect to \(\mu\), and also minimizing the Helmholtz free energy wrt \(N_{0}\) and \(M_{0}\), gives
The first equation is familiar from quantumstatistical mechanics and ensures netcharge conservation, i.e., gauge invariance [51], not guaranteed in BCS theory. The last two equations of (3) are needed to have a stable thermodynamic state.
From (3) the GBEC theory [37] gives three coupled, transcendental equations for three unknown Tdependent functions, the \(\mu (T)\) and the 2eCP and 2hCP Bose–Einstein (BE) condensate (i.e., with \(K=0\)) number densities \(N_{0}(T)/L^{3}\equiv n_{0}(T)\) and \(M_{0}(T)/L^{3}\equiv m_{0}(T)\) for 3D. The first equation of (3) leads to a number equation for the ternarygas mixture in terms of the total electronnumber density \(N/L^{3}\equiv n\) and is
where \(n_{B+}(T)\) and \(m_{B+}(T)\) refer to the number densities of excited 2eCP and 2hCP bosons with \(K>0\). The free/unbound electronnumber density \(n_{f}(T)\) turns out to be
Here, \(E_{f}\) is viewed as a “pseudoFermi” energy as it refers only to free electrons at T = 0 and \(E(\epsilon )\equiv \sqrt{(\epsilon \mu )^{2}+\Delta ^{2}(T)}\) is the gapped Bogoliubov fermiondispersion relation containing the electronic energy gap
where \(f_{\pm }(\epsilon )\) are BF vertexinteraction constants. For condensed 2eCPs
and for condensed 2hCPs
as originally defined in Refs. [37, 38]. Here f was taken as \(f\equiv f_{+}=f_{}\). Here \(E_f\) and \(\delta \epsilon\) are phenomenological energies associated with the free/unbound electrons in the BF gas mixture. \(E_f\) is related with the number density of the unbound fermions of the system \(n_f(T=0) \equiv n_f\) just as in (5). This number of unbound fermions is necessary in the calculation of the energy gap as well as in the chemical potential to obtain the superfluid density. While \(\delta \epsilon\) is the energy range where the BF interactions occur and can be identified with the Debye energy of the lattice. Note that \(E_{f}\) coincides exactly with the Fermi energy \(E_{F}\) of an ideal fermion gas when \(n_{0}(T)=m_{0}(T)\) and \(n_{B+}(T)=m_{B+}(T)\), i.e., for a 50%–50% gas mixture of 2eCPs/2hCPs. For unbound electrons in 3D the density of states (DOS) is \(N(\epsilon )=\left( m^{3/2}/2^{1/2}\pi ^{2}\hbar ^{3}\right) \epsilon ^{1/2}\) and for 2D it is the constant \(N(\epsilon )=m/2\pi \hbar ^{2}\).
References [52, 53] introduce a generalized energy dispersion relation for the bosonic CPs. In the weakcoupling limit the dispersion relation can be expanded for small K in a series around K. In 2D one has \(\varepsilon _{K}\underset{K\rightarrow 0}{\longrightarrow } \varepsilon _{0}+\tfrac{2}{\pi }\hbar v_{F}K+O(K^{2})\) where \(v_{F}\) is the Fermi velocity. If \(\delta \epsilon \ll E_{F}\) is the energy range over which the BF interaction acts in 3D and gives \(\varepsilon _{K}\underset{ K\rightarrow 0}{\longrightarrow }\varepsilon _{0}+\tfrac{1}{2}\hbar v_{F}K+O(K^{2})\).
For an ideal Bose gas (IBG) consisting of pairs of fermions \(T_{c}\) is nonzero if \(d>s\) [54] where d is the gas dimensionality and s the exponent of the bosonic CP dispersionrelation energy. As in Ref. [54] in 3D one has \(s=2\) and in 2D \(s=1\). With this one recovers the results of an IBG of two bound electrons as CPs if all electrons are assumed paired [55], i.e., with no unbound fermions left in the gas.
The excited (or noncondensed) boson number densities then become
where \(M(\varepsilon )\) is the bosonic DOS and \({\mathcal {E}}_{\pm }(\varepsilon )=\pm 2E_{f}+\delta \varepsilon \mp 2\mu +\varepsilon\) the energy of excited 2e/2hCPs. For the 3D IBG with \(s=2\) one has
and in 2D with \(s=1\) [54]
We introduce \({\tilde{G}}\) a BF dimensionless strength interaction in 2D which in turn is related with the BF vertexinteraction constants f as
where the second equation is in 3D, last defined in Refs. [37, 38]. The Bose distributions in (9) and (10) are clear indications of the bosonic nature of both kinds of CPs. In 3D the BF strength interaction can be related with the BCS dimensionless coupling paremeter \(\lambda _{BCS}\) as \(G_{3D} = \lambda _{BCS}\delta\epsilon_{3D}/2\) and in 2D as \(G_{2D} = \lambda_{BCS}\delta\epsilon_{2D}/4\).
The second equation in (3) gives a gaplike equation for 2eCPs
and the third equation in (3) the same, but for 2hCPs
We then have three special cases, namely

(i)
50%–50% proportions between 2eCPs and 2hCPs, i.e., \(n_0(T) = m_0(T)\) and \(n_{B+}(T) = m_{B+}(T)\) solving simultaneously (14) plus (15) with (4),

(ii)
100%–0%, i.e., \(m_0(T)=0\) solving simultaneously (14) with (4) and

(iii)
0%–100%, i.e., \(n_0(T)=0\) solving simultaneously (15) with (4).
The set of equations (14), (15) and (4) are called as the extended BCSBose crossover equations with explicit inclusion of 2hCPs [42] and contains a dimensionless coupling parameter \(n/n_f\) with n the total number density and \(n_f\) that for unbound electrons at zero absolute temperature. We found two distinct coupling regimes, namely i) weak coupling for \(n/n_{f}=1\) when all electrons are unbound, albeit like “correlated ”pairs as in BCS theory, with \(\mu (T=0)=E_{F}\); ii) strong coupling when \(n/n_{f} \rightarrow \infty\) as when, e.g., \(n_{f} \rightarrow 0\), meaning that all electrons are paired into CPs implying an IBG consisting of 2eCPs when \(\mu (T)/E_{F}\rightarrow 0\). Here \(n/n_{f}=10^{6}\) is virtually the strongcoupling extreme; and iii) an intermediate regime between weak and strongcoupling when \(1<n/n_{f}<\infty\). Varying this parameter from \(n/n_f = 1\) one can describe elemental superconductors. Changing \(n/n_f\) slightly from unity one can address SCs like Pb and Hg which are known as “bad actors” [56] in BCS theory.
In the extended BCSBose crossover one calculates [57] the ratio \(T_{c}/T_{F}\equiv k_{B}T_{c}/E_{F}\) for several elemental superconductors including the BCS theory “bad actors” Hg and Pb. This was reported in Ref. [57] for the energy gap in the 50%–50% case and found to agree to with the data, whereas the 100%–0% case [i.e., when \(m_{0}(T)=0\)] lies too far below data trends and likewise for the 50%–50% case. This already suggests that condensed 2hCPs might be necessary to correctly describe any SC. Recall that from Ref. [37] 2hCPs are indispensable in a BCS condensate which must be a 50%–50% mixture to give the BCS gap equation exactly for all couplings and all Ts as well as the full condensation energy for \(T=0\).
Superconductor superfluid density
In the extendedcrossover theory the Tdependent superfluid number density \(n_{s}(T)\) involves only those CPs either in the ground/excited state for \(T\le T_{c}\). One can then define \(n_{s}(T)\) as
where n is the total number density (4) and \(n_{f}(T)\) that of unbound electrons (5). Here, the superfluid density (SFD) (16) resembles the SFD of the Landau twofluid model [5,6,7] where the total mass density is \(\rho =\rho _{s}+\rho _{n}\) with \(\rho _{s}\) the superfluid mass density and \(\rho _{n}\) SFD with Bose statistics since in (16) there are only CPs as bosons.
There are two special cases: i) \(m_{0}(T)\) = 0, i.e., there are no condensed 2hCPs, so one has the 100%–0% case and the SFD is
and ii) \(n_{0}(T)=0\), i.e., there are no condensed 2eCPs, one has in the 0%–100% case
The more general case (16) includes both kind of CPs, while 100%–0% and 0%–100% cases one have ignored one kind of condensed CPs. To find the superfluid density in this extended crossover one must solve the set equations (14), (15) and (4) to have the energy gap as well as the chemical potential, both dependent of temperature. These values must be substituted in (16), (17) and (18).
Figure 1a shows a phase diagram of the dimensionless superfluid density \(n_s(0)/n\) vs. the dimensionless number density \(n/n_f\) for the 100%–0% case using (17) and for the 0%–100% case using (18) in 3D with a quadratic energydispersion relation as well as in 2D with linear relation. If one takes the 50%–50% proportions in (16) one sees that \(n_s(T) = 0\) implying that both kinds of CPs cannot contribute to SFD in any coupling regime while the 100%–0% and 0%–100% cases can do. Taking the weakcoupling extreme, i.e., when \(n/n_f = 1\) the 100%–0% and 0%–100% cases cannot contribute to SFD, one must take \(n/n_f \ne 1\). Taking \(n/n_f \simeq 10^{3}\) one sees that the 100%–0% case in 3D as well as in 2D all electrons are paired, i.e., one has an ideal Bose gas composed of 2eCPs. The 0%–100% case with \(n/n_f = 0.5\) all holes paired into 2hCPs. Thus \(n/n_f\) becomes our interest here since taking \(n/n_f =1\) all particles are unbound, implying that \(n/n_f > 1\) electrons paired into CPs and taking \(n/n_f <1\), holes paired into 2hCP. However, the proper interpretation of \(n < n_f\) is that the number density of unbound fermions are greater than the total number density, but this leads to a disagreement, instead one might suppose that occurs an insertion of particles to the system, in this case a finite number of 2hCPs, this suggests that the system can be doped with holes.
In Fig. 1b the critical temperature \(T_{c}\) is plotted for the 100%–0% and 0%–100% cases vs \(n_{s}(0)/n\) in both 2D and 3D. Shows the 100%–0% case with a special case where \(m_{B+}(T)=0\), i.e., the excited 2hCPs bosons has been ignored, with a linear energydispersion relation in 2D and with a quadratic relation in 3D. The 0%–100% case enhances the critical temperature at relatively low SFD. Note that \(n_{s}(0)/n\) has a linear behavior in the strongcoupling regime as reported in Ref. [34, Fig. 2d] for \(T_{c}\) vs \(\rho _{s0}\) SFD of data where \(\rho _{s0}\equiv \rho _{s}(T\rightarrow 0)\) from this reference. The mere presence of excited 2hCPs enhances the value of \(T_{c}\) [40, 41]. This is exactly analogous to the increase, at higher and higher temperatures, of antibosons (here 2hCPs) in the relativistic IBG [58].
As mentioned above, the weakcoupling (BCS) regime is when one considers the 50%–50% proportions. Thus in (4) at \(T=0\) one has \(n/n_f = 1\) meaning that the rest of fermions remain unbound. This limit resembles a fermion system interacting via an attractive potential [21] when \(N=N_f\), i.e., sufficiently high fermion densities [59]. The BEC regime is achieved when all fermions are bound as pairs, i.e., the fermion density decrease while boson density increase, namely, the number density ratio changes as \(1 \le n/n_f < \infty\). These properties are described in the phase diagram \(T_c/T_F\) vs \(n/n_f\) in but is here extended with the dimensionless SFD \(n_s(0)/n\), which is illustrated in Fig. 2 in 3D. The phase diagram of Fig. 2 describes the behavior of the dimensionless SFD at \(T=0\) when the dimensionless number density varies as function of \(T_c/T_F\). For 100%–0% case in the strongcoupling regime when \(n/n_f > 10^2\) almost all fermions as pairs are in the superfluid state, while for 0%–100% case this occur when \(n/n_f \rightarrow 1/2\), but the 50%–50% case the dimensionless SFD is zero as shown before. Also, note that \(T_c/T_F\) increases linearly as the dimensionless SFD increases in the strongcoupling regime as Uemura et al. [32, 33] and independently Božović et al. [34] found. The region of arbitrary proportions between 2eCPs and 2hCPs may lie between the whiteorange (1000) surface and lightblue (0100) surface.
Table 1 lists superfluid density \(n_{s}(T=0)\) experimental values and also calculated with the extendedcrossover set of equations (17) and (18) for 100%–0% and 0%–100% cases, respectively, taking specifically \(n/n_f = 1.00001\) for 100%–0%, meaning that the number density of unbound electrons is 0.001% smaller than the total number density. For 0%–100% \(n/n_f = 0.99999\) was used meaning that the number density of unbound holes is 0.001% greater than of that total number density, i.e., it has been inserted as finite number of 2hCP. These values of the dimensionless number density are near the weak coupling extreme (BCS theory) for elemental superconductors. They are compared with data from Ref. [33] in 2D. In 3D as \(n_{s,3D}^{2/3}(T=0)\) with a quadratic energydispersion relation and in 2D simply as \(n_{s,2D}(T=0)\) and with a linear relation. Note that the 3D results agree with data trends, while in 2D results have some orders of magnitude below even from the 3D case.
Also shown is the penetration depth \(\lambda ^{2} \propto m^{\star } / n_s\) results in 3D. Results of the 100%–0% case for Zn are near the data while the 0%–100% case is so for Al, Sn and Nb, while the 2D cases are not reported since the SFD are too far below of data. But it needs the Pippard coherence length of the 2e/2hCPs to have a complete picture of the penetration depth. Here we used the effective electron mass in 3D for the calculations in 3D and 2D. Also listed are the BF parameters as \(\delta {\tilde{\epsilon }}\) and \({\tilde{G}}\) for each SC. Future work will be to use the effective mass tensor.
For an ultracold bosonic atomic gas one must solve the 100%–0% case, i.e., with \(m_{0}(T)=m_{B+}(T)=0\). This is analogous to an IBG gas when \(n/n_{f}\rightarrow \infty\), e.g., when \(n_{f}=0\). Here 2hCPs contributions can be neglected as their numbers are likely negligible at the very low densities associated with a shallow Fermi sea is expected [60] to accommodate only a tiny number of holes. Ignoring them, one recovers the limits of \(T_{c}/T_{F}\) when \(n/n_{f}\rightarrow \infty\). For the extended crossover in 3D giving \(T_{c}/T_{F}\rightarrow 0.204\) and in 2D \(T_{c}/T_{F}\rightarrow 0.034\) so that \(n_{s}(0)/n\rightarrow 1\) as expected [55]. Results in Table 1 suggest again the connection between superfluid density and Bose statistics. The \(_{2}^{4}\)He case is worth mentioning too because all fermions are supposed to be paired for extremely strong coupling, viz., \(n/n_{f}\rightarrow \infty\), leaving essentially an IBG so that the calculated superfluid density agrees with the data. This suggests that this BF mixture with the 100%–0% case can describe successfully ultracold fermionic atomic clouds.
Figure 3a shows calculated 2D superfluid density \(n_{s}(T)/n_{s}(0)\) vs \(T/T_{c}\) curves with a linear dispersion relation using (17) and (18) compared with HTSC data [63,64,65]. Also plotted is the 100%–0% case near weak coupling with \(n/n_f = 1.00005\) and the intermediate coupling with \(n/n_f = 100\). The former approximates better the data trends but the latter is too far below the data. Also plotted is the 0%–100% case near weak coupling with \(n/n_f = 0.99999\) and \(n/n_f = 0.997\). The former appears to mean that 0.001% of unbound holes have been inserted while the latter with 0.3%. If one varies \(n/n_1 \ne 1\) with 2hCPs one can adjust to data trends. This suggests that this HTSC cannot be correctly described by a 50%–50% mix of 2eCPs/2hCPs in the weakcoupling regime.
Figure 3b shows the 3D superfluid density \(n_{s}(T)/n_{s}(0)\) vs T/T_{c} with a quadratic relation compared with the same HTSCs data [63,64,65] previously shown. Shows the weakcoupling regime solving (17) and (18), these two cases are so far from data but they are near of the SFD curve of BCS theory, this suggesting that this HTSC cannot be explained by weakcoupling BCS theory, as long suspected. But if one changes \(n/n_f \ne 1\) both curves come together with the general behavior but not adjust to data. This suggests that the 3D case cannot describe at all the HTSC data.
In 3D, the 100–0% as well as the 0%–100% cases near weakcoupling regime, i.e., with \(n/n_f=1\) is too far from the data and also from the BCS curve. Thus, these cuprates cannot be correctly described with weakcoupling assumptions. However, for these SC cuprates occurs in cuasi2D as in La\(_{2x}\)Sr\(_{x}\)CuO\(_{4}\) with \(x=0.21\) [64]. In 2D, the 100%–0% as well as 0%–100% curves with \(n/n_{f} \simeq 1\) does describe the general behavior, although the 0%–100% case changing as \(0.997 \le n/n_{f} \le 0.99999\) can adjust the data, suggesting that charge carriers are 2hCPs. This suggests that this SC might lie between a BF mixture with \(n/n_{f}=1\) and \(n/n_{f}=10^{2}\), i.e., in the intermediatecoupling regime.
Discussion
From Kaptiza’s arguments on the superfluid density and from definitions of (17) and (18), the 2eCPs and the 2hCPs contribute to the superfluid density. The extended crossover leads to the important concept of “three components” since one here deals with a ternary gas. Taking the 50%–50% mixture of 2eCPs/2hCPs, i.e., \(n_{0}(T)=m_{0}(T)\) and \(n_{B+}(T)=m_{B+}(T)\) implying that \(n_{s}(T) = 0\); this result drastically contrasts with the results of the energy gap or the critical temperature [42]. This result is quite different, even for the BCStheory superfluid density it was assumed to be a symmetrical distribution between 2eCPs and 2hCPs, this symmetry remains unclear in their superfluid density. Furthermore, in the London penetration depth related with superconductor density there is no mention on what kind of charge carriers are involved, even as it’s supposed to be negative charge carriers, i.e., electrons. We have considered this kind of symmetry and obtained good results [57]. Thus, in definitions given in (17) and (18) there are two kinds of specific contributions of condensed 2eCPs/2hCPs as well as excited 2e/2hCPs. The main advantage of the extended crossover theory seems to be the explicit inclusion of 2hCPs. This addition of 2hCPs might be interpreted as doping since the number density has been increased.
Two independent groups, Uemura et al. [32, 33] and Božović et al. [34], have found that the critical temperature \(T_{c}\) has a linear relationship with the superfluid density, rather than with the coupling strength as commonly held. This is illustrated in Fig. 1b showing \(T_{c}\) vs superfluid density of 2eCPs after using (17) for 100%–0% cases. It’s worth mentioning here that the 0%–100% case enhanced \(T_c\)s with relatively low SFDs. Also, one sees that in the range of intermediate to strongcoupling regime clearly showing that regardless of the paircoupling strength the linear relationship between superfluid density and \(T_{c}\) can, in fact, be explained by an increase of the number of 2eCPs as many have long claimed, at least in 2D, and also with the explicitly inclusion of excited 2hCPs.
Conclusions
The superfluid density \(n_{s}(T)\) was calculated with the extendedcrossover theory from the GBEC theory. In the weakcoupling regime, in 3D \(n_{s}(T=0)\) agrees with the Uemura et al. [32] data for the elemental SCs like Zn, Al, Sn and Nb. However, the quadratic energydispersion relation in 3D gives a better approach to the superfluid density reported, at least for the elemental SCs since here can be addressed with a BF gas mixture in 3D. Regarding all of this, there are at least five thermodynamic scenarios, e.g., see Ref. [57], which show that a lack of 2hCPs decreases the energygap size and also that of the gapto\(T_{c}\) ratio from wellknown data, leading one to conclude unequivocally that condensed 2hCPs are indeed indispensable to correctly describe SCs. However, in the strongcoupling regime \(n_{s}(T)\) for ultracoldbosonicatomic clouds of, e.g., \(_{2}^{4}\)He, in the 100%–0% case [i.e., with \(m_{0}(T)=m_{B+}(T)=0\) and \(n/n_{f}\simeq 10^{6}\)] agrees remarkably well with the data, indicating that condensed ultracold bosonic gases behave like ordinary BE condensates. Also, the superfluid density \(n_{s}(0)/n\) in strong coupling is seen to have a linear behavior with \(T_{c}\) just as Božović et al. [34] found. Hence, HTSC data can be described reasonably well with a BF mixture using the 100%–0% and the 0%–100% cases between weak and strongcoupling in 2D by changing the number density of the unbound fermions.
Future work will focus on \(n_{s}(T)\) using the 0%–100% case for some other HTSCs and for ultracoldfermionicatomic clouds [66, 67] including BF gas mixtures like \(_{2}^{4}\)He / \(_{2}^{3}\)He and also with the critical magnetic field \(H_{c}^{2}(T,n)/8\pi\) of the superfluid density from the extendedcrossover theory. Also, the dimensionless number density that we used since a coupling parameter has been changed slightly and is not big enough to note any singular phenomena. This will be dealt with in another paper. However, it seems to us necessary to address the electronic structure in this BF theory; this might improve the results shown here. The electronic structure study will be discussed elsewhere as part of future work.
References
Kapitza P (1938) Viscosity of liquid helium below the \(\lambda \)point. Nature 141:74. https://doi.org/10.1038/141074a0
Allen J, Misener A (1938) Flow of liquid helium II. Nature 141:75. https://doi.org/10.1038/141075a0
Bardeen J, Cooper L, Schrieffer J (1957) Theory of superconductivity. Phys Rev 108:1175. https://doi.org/10.1103/PhysRev.108.1175
London F (1938) The \(\lambda \)phenomenon of liquid helium and the BoseEinstein degeneracy. Nature 141:643–644. https://doi.org/10.1038/141643a0
Landau LD (1941) The theory of superfuidity of helium II. J Phys USSR 5:71–100 (1941)
Landau LD (1947) The theory of superfuidity of helium II. J Phys USSR 11:91
Landau LD (1949) On the theory of superfluidity. Phys Rev 75:884. https://doi.org/10.1103/PhysRev.75.884
Bogoliubov NN (1947) On the theory of superfluidity. J Phys USSR 11:23–32
Balibar S (2007) The discovery of superfluidity. J Low Temp Phys 146:441–470. https://doi.org/10.1007/s1090900692767
Leggett AJ (1972) Interpretation of recent results on He\(^3\) below 3 mK: a new liquid phase? Phys Rev Lett 29:1227. https://doi.org/10.1103/PhysRevLett.29.1227
Leggett AJ (2004) Nobel lecture: superfluid \(^3\)He: the early days as seen by a theorist. Rev Mod Phys 76:999. https://doi.org/10.1103/RevModPhys.76.999
Osheroff DD, Richardson RC, Lee DM (1972) Evidence for a new phase of solid He\(^3\). Phys Rev Lett 28:885. https://doi.org/10.1103/PhysRevLett.28.885
Anderson PW, Morel P (1961) Generalized BardeenCooperSchrieffer states and the proposed lowtemperature phase of liquid He\(^3\). Phys Rev 123:1911. https://doi.org/10.1103/PhysRev.123.1911
Leggett AJ (1980) Cooper pairing in spinpolarized fermi systems. J Phys Colloques 41:C719–C726. https://doi.org/10.1051/jphyscol:1980704
Schrieffer JR (1963) Theory of superconductivity. Benjamin, New York, p 41
Keldysh LV, Kopaev YV (1965) Possible instability of the semimetallic state toward coulomb interaction. Sov Phys Sol St 6:2219
Popov VN (1966) Theory of a Bose gas produced by bound states of fermi particles. Sov Phys JETP 50:1034
Labbé J, Barišić F, Friedel J (1967) Strongcoupling superconductivity in V\(_3\)X type of compounds. Phys Rev Lett 19:1039. https://doi.org/10.1103/PhysRevLett.19.1039
Eagles DM (1969) Possible pairing without superconductivity at low carrier concentrations in bulk and thinfilm superconducting semiconductors. Phys Rev 186:456. https://doi.org/10.1103/PhysRev.186.456
Miyake K (1983) Fermi liquid theory of dilute Submonolayer \(^3\)He on thin \(^4\)He II film: dimer bound state and cooper pairs. Prog Theor Phys 69:1794–1797. https://doi.org/10.1143/PTP.69.1794
Noziéres P, SchmittRink S (1986) Bose condensation in an attractive fermion gas: From weak to strong coupling superconductivity. J Low Temp Phys 59:195–211. https://doi.org/10.1007/BF00683774
Ranninger J, Micnas R, Robaszkiewicz S (1988) Superconductivity of a mixture of local pairs and quasi free electrons. Ann Phys Fr 13(5):455–464. https://doi.org/10.1051/anphys:01988001305045500
Randeria M, Duan JM, Shieh LY (1989) Bound states, Cooper pairing, and Bose condensation in two dimensions. Phys Rev Lett 62:981. https://doi.org/10.1103/PhysRevLett.62.981
Randeria M, Duan JM, Shieh LY (1989) Erratum Phys Rev Lett 62:2887. https://doi.org/10.1103/PhysRevLett.62.2887
van der Marel D (1990) Anomalous behaviour of the chemical potential in superconductors with a low density of charge carriers. Physica C 165:3543. https://doi.org/10.1016/09214534(90)90429I
BarYam Y (1991) Twocomponent superconductivity. I. Introduction and phenomenology Phys Rev B 43:359 https://doi.org/10.1103/PhysRevB.43.359
BarYam Y (1991) Twocomponent superconductivity. II. Copper oxide high\(T_c\) superconductors 43:2601 https://doi.org/10.1103/PhysRevB.43.2601
Drechsler M, Zwerger W (1992) Crossover from BCS superconductivity to Bose condensation. Ann. der Physik 1:15–23. https://doi.org/10.1002/andp.19925040105
Haussmann R (1994) Properties of a Fermi liquid at the superfluid transition in the crossover region between BCS superconductivity and BoseEinstein condensation. Phys Rev B 49:12975. https://doi.org/10.1103/PhysRevB.49.12975
Pistolesi F, Strinati GC (1996) Evolution from BCS superconductivity to Bose condensation: calculation of the zerotemperature phase coherence length. Phys Rev B 53:15168. https://doi.org/10.1103/PhysRevB.53.15168
Fujita S, Godoy S (2002) Quantum statistical theory of superconductivity. Kluwer Academic Publishers, New York, p 258
Uemura YJ et al (1989) Universal correlations between \(T_c\) and \(n_s/m^{*}\) (carrier density over effective mass) in high\(T_c\) Cuprate superconductors. Phys Rev Lett 62:2317. https://doi.org/10.1103/PhysRevLett.62.2317
Uemura YJ (2004) Condensation, excitation, pairing, and superfluid density in high\(T_c\) superconductors: the magnetic resonance mode as a roton analogue and a possible spinmediated pairing. J Phys Cond Matter 16(40):S4515–S4540. https://doi.org/10.1088/09538984/16/40/007
Božović I, He X, Wu J et al (2016) Dependence of the critical temperature in overdoped copper oxides on superfluid density. Nature 536:309–311. https://doi.org/10.1038/nature19061
Quick RM, Esebbag C, de Llano M (1993) BCS theory tested in an exactly solvable fermion fluid. Phys Rev B 47:11512. https://doi.org/10.1103/PhysRevB.47.11512
Adhikari SK, de Llano M, Sevilla FJ, Solís MA, Valencia JJ (2007) The BCSBose crossover theory. Physica C 453:37–45. https://doi.org/10.1016/j.physc.2006.12.004
Tolmachev VV (2000) Superconducting BoseEinstein condensates of Cooper pairs interacting with electrons. Phys Lett A 266:400–408. https://doi.org/10.1016/S03759601(00)000797
de Llano M, Tolmachev VV (2003) Multiple phases in a new statistical bosonfermion model of superconductivity. Phys A 317:546–564. https://doi.org/10.1016/S03784371(02)013481
de Llano M, Tolmachev VV (2010) A generalized BoseEinstein condensation theory of superconductivity inspired by Bogolyubov. Ukr Phys J 55:79–84
Grether M, de Llano M, Tolmachev VV (2013) A generalized BEC picture of superconductors. Int J Quant Chem 112:3018–3024. https://doi.org/10.1002/qua.24193
Grether M, de Llano M, Tolmachev VV (2013) Generalized BoseEinstein condensation formalism and BCS theory. J Supercond Nov Magn 26:1915–1919. https://doi.org/10.1007/s1094801220547
Chávez I, García LA, Grether M, de Llano M, Tolmachev VV (2018) Extended BCSBose crossover. J Supercond Nov Magn 31:631–637. https://doi.org/10.1007/s109480174383z
Cooper LN (1956) Bound electron pairs in a degenerate fermi gas. Phys Rev 104:1189–1190. https://doi.org/10.1103/PhysRev.104.1189
Fetter AL, Walecka JD (1971) Quantum theory of manyparticle systems. McGrawHill, New York
Bogoliubov NN (1958) A new method in the theory of superconductivity. I. Sov Phys JETP 34:4146 (1958)
Valatin JG (1958) Comments on the theory of superconductivity. Nuovo Cim 7:843–857. https://doi.org/10.1007/BF02745589
Mamedov TA, de Llano M (2010) Superconducting Pseudogap in a BosonFermion model. J Phys Soc Jpn 79:044706–044714. https://doi.org/10.1143/JPSJ.79.044706
Mamedov TA (2011) de Llano. Generalized Superconducting Gap in an Anisotropic BosonFermion Mixture with a Uniform Coulomb Field. 80:074718–074725. https://doi.org/10.1143/JPSJ.80.074718
Mamedov TA, de Llano (2013) Depairing and BoseEinstein condensation temperatures in a bosonfermion superconductor model with Coulomb effects. Phil Mag 93:2896–2912. https://doi.org/10.1080/14786435.2013.790568
Mamedov TA, de Llano (2014) Are preformed Cooper pairs the cause for the pseudogap in superconductors? 94:4102–4114 https://doi.org/10.1080/14786435.2014.979903
Nambu Y (1960) Quasiparticles and gauge invariance in the theory of superconductivity. Phys Rev 117:648. https://doi.org/10.1103/PhysRev.117.648
AguileraNavarro VC, de Llano M, Solís MA (1999) BoseEinstein condensation for general dispersion relations. Eur J Phys 20:177. https://doi.org/10.1088/01430807/20/3/307
de Llano M (2008) High\(T_{c}\) superconductivity via BCS and BEC unification: a review. In: Martins BP (ed) Frontiers in superconductivity research. Nova, New York, pp 1–52
Adhikari SK, Casas M, Puente A et al (2000) Cooper pair dispersion relation for weak to strong coupling. Phys Rev B 62:8671. https://doi.org/10.1103/PhysRevB.62.8671
Casas M, Rigo A, de Llano M et al (1998) BoseEinstein condensation with a BCS model interaction. Phys Lett A 245:55–61. https://doi.org/10.1016/S03759601(98)003776
Webb GW, Marsiglio F, Hirsch JE (2015) Superconductivity in the elements, alloys and simple compounds. Physica C 514:17–27. https://doi.org/10.1016/j.physc.2015.02.037
Chávez I, García LA, Grether M, de Llano M, Tolmachev VV (2019) Twoelectron and twohole cooper pairs in superconductivity. J Supercond Nov Magn 32:1633–1638. https://doi.org/10.1007/s1094801848906
Grether M, de Llano M, Baker GA Jr (2007) BoseEinstein condensation in the relativistic ideal Bose gas. Phys Rev Lett 99:200406. https://doi.org/10.1103/PhysRevLett.99.200406
Andrenacci N, Perali A, Pieri P, Strinati GC (1999) Densityinduced BCS to BoseEinstein crossover. Phys Rev B 60:12410. https://doi.org/10.1103/PhysRevB.60.12410
Grether M, de Llano M, Ramírez S, Rojo O (2008) Intriguing role of holeCooperpairs in superconductors and superfluids. Int J Mod Phys B 22:4367–4378. https://doi.org/10.1142/S0217979208050127
Ashcroft NW, Mermin ND (1976) Solid state physics. Saunders College Publishing, USA, pp. 38 and 48
Vakarchuk IO, Hryhorchak OI, Pastukhov VS, Prytula RO (2016) Effective mass of \(^4\)He atom in superfluid and normal phases. Ukr J Phys 61(1):29. https://doi.org/10.15407/ujpe61.01.0029
Mao J, Wu DH, Peng JL et al (1995) Anisotropic surface impedance of YBa\(_2\)Cu\(_3\)O\(_{7\delta }\) single crystals. Phys Rev B 51:3316(R). https://doi.org/10.1103/PhysRevB.51.3316
Lemberger TR, Hetel I, Tsukada A et al (2011) Superconductortometal quantum phase transition in overdoped La\(_{2x}\)Sr\(_x\)CuO\(_4\). Phys Rev B 83:140507(R). https://doi.org/10.1103/PhysRevB.83.140507
Shengelaya A, Aegerter CM, Romer S et al (1998) Muonspinrotation measurements of the penetration depth in the YBa\(_2\)Cu\(_4\)O\(_8\) family of superconductors. Phys Rev B 58:3457. https://doi.org/10.1103/PhysRevB.58.3457
Regal CA, Jin DS (2003) Measurement of positive and negative scattering lengths in a fermi gas of atoms. Phys Rev Lett 90:230404. https://doi.org/10.1103/PhysRevLett.90.230404
Regal CA, Greiner M, Jin DS (2004) Observation of resonance condensation of fermionic atom pairs. Phys Rev Lett 92:040403. https://doi.org/10.1103/PhysRevLett.92.040403
Acknowledgements
This paper was written in memory of Vladimir V. Tolmachev (19322018). I.C. thanks P. Salas and M.A. Solís for valuable discussions.
Funding
M. de Ll. thanks PAPIITDGAPAUNAM (Mexico) for research Grant IN11512031. We also thank CONACyT (Mexico) for Grant CB2016I# 285894.
Author information
Authors and Affiliations
Contributions
Documentary research and numerical calculations by Israel Chávez, analysis by Israel Chávez and Marcela Grether. The first draft of the manuscript was written by Israel Chávez, reviews and editing by Marcela Grether and Manuel de Llano. All authors discussed previous versions of this manuscript. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Conflicts of interest
All authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Chávez, I., Grether, M. & de Llano, M. Superconductor superfluid density from the Bardeen–Cooper–Schrieffer/Bose crossover theory. SN Appl. Sci. 4, 196 (2022). https://doi.org/10.1007/s42452022050740
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s42452022050740
Keywords
 Bosonfermion gas mixture
 Twoelectron/twohole Cooper pairs
 BCSBose crossover theory
 Superfluid density