Skip to main content
Log in

Research on Dynamic Modeling and Distributed Cooperative Control Method of Dumbbell-Shaped Spacecraft

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

To suppress the vibration of dumbbell-shaped spacecraft by combining distributed cooperative control (DCC) and component synthesis vibration suppression (CSVS).

Methods

The dumbbell-shaped spacecraft is divided into control sub-modules, and the dynamic model for distributed control is established according to Newton–Euler method and Lagrange’s equations of second kind; The distributed controller is designed by combining graph theory and consistency theory, and the stability of the closed-loop system is analyzed based on Lyapunov theory; CSVS + DCC method is proposed to suppress the vibration of dumbbell spacecraft. Finally, numerical simulation is used to verify the superiority and effectiveness.

Results

The large angle attitude maneuver of dumbbell spacecraft can be completed by CSVS + DCC method. Compared with bang-bang control, the stabilization time is shortened by 25.76%, and the vibration amplitude at the center of mass of the system is reduced by 53.06%.

Conclusion

The vibration of dumbbell spacecraft can be actively suppressed by CSVS + DCC active vibration suppression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Koroteev A, Oshev YA (2015) Popov: nuclear power propulsion system for spacecraft. Therm Eng 62(13):971–980

    Article  Google Scholar 

  2. Wang B, Liu Z, Zheng P (2022) Rigid-flexible coupling dynamic modeling and analysis of dumbbell-shaped spacecraft. Aerosp Sci Technol 107641:74–80. https://doi.org/10.1016/j.ast.2022.107641

    Article  Google Scholar 

  3. Liu M, Cao D, Wei J (2021) Survey on equivalent continuum modeling for truss structures and their nonlinear dynamics and vibration control. J Vib Eng Technol. https://doi.org/10.1007/s42417-021-00398-4

    Article  Google Scholar 

  4. Liu M, Cao D, Li J, Zhang X, Wei J (2022) Dynamic modeling and vibration control of a large flexible space truss. Meccanica 57:1017–1033. https://doi.org/10.1007/s11012-022-01487-8

    Article  MathSciNet  Google Scholar 

  5. Liu M, Cao D, Zhang X, Wei J, Zhu D (2021) Nonlinear dynamic responses of beamlike truss based on the equivalent nonlinear beam model. Int J Mech Sci 194:106197. https://doi.org/10.1016/j.ijmecsci.2020.106197

    Article  Google Scholar 

  6. Fan L, Huang H, Sun L, Zhou K (2019) Robust attitude control for a rigid-flexiblerigid microsatellite with multiple uncertainties and input saturations. Aerosp Sci Technol 95:105443. https://doi.org/10.1016/j.ast.2019.105443

    Article  Google Scholar 

  7. Xu S, Cui N, Fan Y, Guan Y (2018) Flexible satellite attitude maneuver via adaptive sliding mode control and active vibration suppression. AIAA J 56:4205–4212. https://doi.org/10.2514/1.J057287

    Article  Google Scholar 

  8. Zhang K, Scorletti G, Ichchou MN, Mieyeville F (2014) Robust active vibration control of piezoelectric flexible structures using deterministic and probabilisticanalysis. J Intell Mater Syst Struct 25:665–679. https://doi.org/10.1177/1045389X13500574

    Article  Google Scholar 

  9. Zhang K, Wu S, Wu Z (2021) Multibody dynamics and robust attitude control of a mw-level solar power satellite. Aerosp Sci Technol 111:106575. https://doi.org/10.1016/j.ast.2021.106575

    Article  Google Scholar 

  10. Saad MS, Jamaluddin H, Mat Darus IZ (2015) Online monitoring and self-tuning control using pole placement method for active vibration control of a flexible beam. J Vib Control 21:449–460. https://doi.org/10.1177/1077546313485105

    Article  Google Scholar 

  11. Kumar S, Matouk AE, Chaudhary H, Kant S (2021) Control and synchronization of fractional-order chaotic satellite systems using feedback and adaptive control techniques. Int J Adapt Control Signal Process 35:484–497. https://doi.org/10.1002/acs.3207

    Article  MathSciNet  Google Scholar 

  12. Najafizadeh Sari N, Jahanshahi H, Fakoor M (2019) Adaptive fuzzy pid control strategy for spacecraft attitude control. Int J Fuzzy Syst 21:769–781. https://doi.org/10.1007/s40815-108-0576-2

    Article  MathSciNet  Google Scholar 

  13. Zhou Z, Zhu F, Chen B, Xu D (2021) Barrier lyapunov function-based adaptive fuzzy attitude tracking control for rigid satellite with input delay and output constraint. J Frankl Inst 358:9110–9134. https://doi.org/10.1016/j.jfranklin.2021.09.020

    Article  MathSciNet  Google Scholar 

  14. Aguilar M, Cavasonza LA (2021) Ambrosi: the alpha magnetic spectrometer (ams) on the international space station: part II—results from the first seven years. Phys Rep 894:1–116

    Article  Google Scholar 

  15. Neubert T, Østgaard N, Reglero V, Blanc E, Chanrion O, Oxborrow CA, Orr A, Tacconi M, Hartnack O, Bhanderi DD (2019) The asim mission on the international space station. Space Sci Rev 215:1–17. https://doi.org/10.1007/s40815-018-0576-2

    Article  Google Scholar 

  16. Li X, Xiao J, Fisher JB, Baldocchi DD (2021) Ecostress estimates gross primary production with fine spatial resolution for different times of day from the international space station. Remote Sens Environ 258:112360. https://doi.org/10.1016/j.rse.2021.112360

    Article  Google Scholar 

  17. Hu W, Ye J, Deng Z (2020) Internal resonance of a flexible beam in a spatial tethered system. J Sound Vib 475:115286. https://doi.org/10.1016/j.jsv.2020.115286

    Article  Google Scholar 

  18. Ji X, Zhang Y, Fan G, Li M, Li X (2020) Attitude control of space solar power satellite with large range of relative motion among subsystems. Aerosp Sci Technol 100:105781. https://doi.org/10.1016/j.ast.2020.105781

    Article  Google Scholar 

  19. Halim D, Luo X, Trivailo PM (2014) Decentralized vibration control of a multilink flexible robotic manipulator using smart piezoelectric transducers. Acta Astronaut 104:186–196. https://doi.org/10.1016/j.actaastro.2014.07.016

    Article  Google Scholar 

  20. Sesak J, Coradetti T (1979) Decentralized control of large space structures via forced singular perturbation. In: 17th aerospace sciences meeting. https://doi.org/10.2514/6.1979-195

  21. Luo Y, Zhang X, Zhang Y, Qu Y, Xu M, Fu K, Ye L (2018) Active vibration control of a hoop truss structure with piezoelectric bending actuators based on a fuzzy logic algorithm. Smart Mater Struct 27:085030. https://doi.org/10.1088/1361-665X/aad1b6

    Article  Google Scholar 

  22. Hu Q, Su L, Cao Y, Zhang J (2018) Decentralized simple adaptive control for large space structures. J Sound Vib 427:95–119. https://doi.org/10.1016/j.jsv.2018.04.033

    Article  Google Scholar 

  23. Kim N-I, Kim S, Lee J (2019) Vibration-based damage detection of planar and space trusses using differential evolution algorithm. Appl Acoust 148:308–321. https://doi.org/10.1016/j.apacoust.2018.08.032

    Article  Google Scholar 

  24. Poplawski B, MikuÙlowski G, Mroz A, Jankowski ÙL (2018) Decentralized semi-active damping of free structural vibrations by means of structural nodes with an on/off ability to transmit moments. Mech Syst Signal Process 100:926–939. https://doi.org/10.1016/j.ymssp.2017.08.012

    Article  Google Scholar 

  25. Zhou W, Zhang K, Wu S, Tan S, Wu Z (2022) Distributed cooperative control for vibration suppression of a flexible satellite. Aerosp Sci Technol 128:10750. https://doi.org/10.1016/j.ast.2022.107750

    Article  Google Scholar 

  26. Wang E, Wu S, Liu Y, Wu Z, Liu X (2019) Distributed vibration control of a large solar power satellite. Astrodynamics 3:189–203. https://doi.org/10.1007/s42064-018-0046-5

    Article  Google Scholar 

  27. Omidi E, Mahmoodi SN (2016) Vibration suppression of distributed parameter flexible structures by integral consensus control. J Sound Vib 364:1–13. https://doi.org/10.1016/j.jsv.2015.11.020

    Article  Google Scholar 

  28. Chi J, Alahmadi D (2021) Badminton players’ trajectory under numerical calculation method. Appl Math Nonlinear Sci. https://doi.org/10.2478/amns.2021.2.00125

    Article  Google Scholar 

  29. Wang L (2022) Data forecasting of air-conditioning load in large shopping malls based on multiple nonlinear regression. Appl Math Nonlinear Sci. https://doi.org/10.2478/amns.2022.2.0034

    Article  Google Scholar 

  30. Majola C, Moleleki LD (2022) Symmetry analysis and exact solutions of extended Kadomtsev–Petviashvili equation in fluids. Appl Math Nonlinear Sci. https://doi.org/10.2478/amns.2021.2.00323

    Article  Google Scholar 

  31. Abdel-Gawad HI, Belic M (2022) Similarity solutions of the surface waves equation in (2 + 1) dimensions and bifurcation. Appl Math Nonlinear Sci. https://doi.org/10.2478/amns.2022.1.00102

    Article  Google Scholar 

  32. Zhang D, Yang L, Arbab A (2022) The uniqueness of solutions of fractional differential equations in university mathematics teaching based on the principle of compression mapping. Appl Math Nonlinear Sci. https://doi.org/10.2478/amns.2022.2.00014

    Article  Google Scholar 

  33. Chen C, Mohamed H (2022) Optimal solution of the fractional differential equation to solve the bending performance test of corroded reinforced concrete beams under prestressed fatigue load. Appl Math Nonlinear Sci. https://doi.org/10.2478/amns.2022.2.0035

    Article  Google Scholar 

  34. Ahn J-G, Yang H-I, Kim J-G (2020) Multipoint constraints with Lagrange multiplier for system dynamics and its reduced-order modeling. AIAA J 58:385–401. https://doi.org/10.2514/1.J058118

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Tun Liu for his contribution to the computer implementation of the initial computer code for the co-rotational finite element model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunli Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Equation (6), the simplification process applies the vector first relation as follows:

$$\int_B {{{\varvec{r}}} \times \left( {{\dot{\varvec{\omega }}} \times {{\varvec{\rho}}}} \right)} dm = \underline {{\varvec{e}}}^T \int_B {\left( {\underline{\rho}^T \underline{r} \underline{E} - \underline{\rho} \ \underline{r}^T } \right)} dm \cdot {\dot{\varvec{\omega }}}$$
(54)

When \({\varvec{r = \rho }}\), the vector first relation was transformed into:

$$\int_B {{{\varvec{r}}} \times \left( {{\dot{\varvec{\omega }}} \times {{\varvec{r}}}} \right)} dm = {\mathbb{J}} \cdot {\dot{\varvec{\omega }}}$$
(55)

Appendix 2

Equation (6), the second relation of vector applied in simplification process is as follows:

$$\int_B {{{\varvec{r}}} \times \left[ {{{\varvec{\omega}}} \times \left( {{{\varvec{\omega}}} \times {{\varvec{r}}}} \right)} \right]dm} = {{\varvec{\omega}}} \times {\mathbb{J}} \cdot {{\varvec{\omega}}}$$
(56)

Appendix 3

$$\begin{aligned} \underline{H}_{\Sigma} & = \int_A {\left( {{{\varvec{\zeta}}}_a + {{\varvec{\varDelta}}}_a + {{\varvec{r}}}_{o_a } + {{\varvec{\rho}}}_a } \right) \times \left[ {\underline {\beta}_1^1 + \left( {r_{o_a }^{ \times T} + \underline{\rho}_a^{ \times T} } \right)\underline {\beta}_2^1 } \right]} dm \\ & \quad + \int_C {\left( {{{\varvec{\zeta}}}_c + {{\varvec{\varDelta}}}_c + {{\varvec{r}}}_{o_c } + {{\varvec{\rho}}}_c } \right) \times \left[ {\underline {\beta}_3^{n_e } + \left( {\underline r_{o_c }^{ \times T} + \underline{\rho}_c^{ \times T} } \right)\underline {\beta}_4^{n_e } } \right]} dm \\ & \quad + \sum_{e = 1}^{n_e } {\int_e {\left( {{{\varvec{\zeta}}}_e + {{\varvec{\rho}}}_e + {{\varvec{\delta}}}_e } \right)} } \times \left( {\underline C_{me} \underline N^e \underline P^e } \right)dm. \\ \end{aligned}$$
(57)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, Q., Wang, Q., Li, J. et al. Research on Dynamic Modeling and Distributed Cooperative Control Method of Dumbbell-Shaped Spacecraft. J. Vib. Eng. Technol. 12, 3033–3049 (2024). https://doi.org/10.1007/s42417-023-01031-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-023-01031-2

Keywords

Navigation