Skip to main content
Log in

Survey on Equivalent Continuum Modeling for Truss Structures and Their Nonlinear Dynamics and Vibration Control

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

With the development of engineering structures towards the direction of large-scale, light-weight and multi-function, truss structures are utilized widely in the aerospace and civil sectors due to their outstanding advantages, e.g. light weight, large stiffness ratio and high packaging efficiency. Meanwhile, investigating the nonlinear dynamic mechanism and developing vibration control strategies for large space truss are of practical importance and give rise to interesting scientific issues.

Methods

Finite element method is a popular approach but brings great challenges to the nonlinear dynamic analysis and vibration controller design of truss structures due to the high degree of freedom of the full-scale finite element model. Therefore, the equivalent continuum modeling methodology becomes one of the most important developing trends to address these difficulties and is of high-efficiency especially for the nonlinear dynamic analysis.

Results

In the present paper, the research status about the equivalent continuum modeling of truss structures is sorted out including equivalent modeling methods (the energy equivalent method, the homogenization method, the displacement equivalent criterion, etc.) together with their advantages and drawbacks. Issues on static, dynamic, and buckling analyses of various structural styles (beamlike truss, platelike truss, hoop truss, etc.) with different connection joints are discussed.

Conclusions

More specifically, the research progresses on equivalent nonlinear continuum modeling and the design of vibration control law of the large truss structures are investigated, respectively, and the gap on the nonlinear analysis and vibration control is summarized for the existing researches. Additionally, comment, perspective and opportunity are proposed which could be valuable for the future developments of equivalent continuum modeling and vibration control of the large truss structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Card M, Boyer W (1980) Large space structures-fantasies and facts. In: 21st Structures, structural dynamics, and materials conference, pp 101–114

  2. Jenkins CH (2001) Gossamer spacecraft: membrane and inflatable structures technology for space applications. Prog Astronaut Aeronaut. https://doi.org/10.2514/4.866616

  3. Kiper G, Soylemez E (2009) Deployable space structures. In: 2009 4th International conference on recent advances in space technologies, pp 131–138

  4. Puig L, Barton A, Rando N (2010) A review on large deployable structures for astrophysics missions. Acta Astronaut 67(1–2):12–26

    Article  Google Scholar 

  5. Chajes MJ, Zhang L, Kirby JT (1996) Dynamic analysis of tall building using reduced-order continuum model. J Struct Eng 122(11):1284–1291

    Article  Google Scholar 

  6. Ferretti M (2018) Flexural torsional buckling of uniformly compressed beam-like structures. Contin Mech Thermodyn 30(5):977–993

    Article  MathSciNet  MATH  Google Scholar 

  7. Hahn M, Wallmersperger T, Kröplin B-H (2010) Discrete element representation of continua: proof of concept and determination of the material parameters. Comput Mater Sci 50(2):391–402

    Article  Google Scholar 

  8. Arghavan S, Singh A (2011) Atomic lattice structure and continuum plate theories for the vibrational characteristics of graphenes. J Appl Phys 110(8):084308

    Article  Google Scholar 

  9. Hönig A, Stronge W (2002) In-plane dynamic crushing of honeycomb. Part I: crush band initiation and wave trapping. Int J Mech Sci 44(8):1665–1696

    Article  MATH  Google Scholar 

  10. Kim KS, Piziali RL (1987) Continuum models of materials with beam-microstructure. Int J Solids Struct 23(11):1563–1578

    Article  MATH  Google Scholar 

  11. Wang X, Stronge W (2001) Micro-polar theory for a periodic force on the edge of elastic honeycomb. Int J Eng Sci 39(7):821–850

    Article  MathSciNet  MATH  Google Scholar 

  12. Piccardo G, Tubino F, Luongo A (2019) Equivalent timoshenko linear beam model for the static and dynamic analysis of tower buildings. Appl Math Model 71:77–95

    Article  MathSciNet  MATH  Google Scholar 

  13. Ziegler E, Accorsi M, Bennett M (2004) Continuum plate model for lattice block material. Mech Mater 36(8):753–766

    Article  Google Scholar 

  14. Noor AK, Mikulas MM (1988) Continuum modeling of large lattice structures: status and projections. In: Large space structures: dynamics and control, Springer, pp 1–34

  15. Salehian A, Ibrahim M, Seigler T (2014) Damping in periodic structures: a continuum modeling approach. AIAA J 52(3):569–590

    Article  Google Scholar 

  16. Liu M, Cao D, Zhang X, Wei J, Zhu D (2020) Nonlinear dynamic responses of beamlike truss based on the equivalent nonlinear beam model. Int J Mech Sci 194:106197

    Article  Google Scholar 

  17. Nayfeh AH, Hefzy MS (1978) Continuum modeling of three-dimensional truss-like space structures. AIAA J 16(8):779–787

    Article  MATH  Google Scholar 

  18. Nayfeh AH, Hefzy MS (1981) Continuum modeling of the mechanical and thermal behavior of discrete large structures. AIAA J 19(6):766–773

    Article  MATH  Google Scholar 

  19. Noor AK, Anderson MS, Greene WH (1978) Continuum models for beam-and platelike lattice structures. AIAA J 16(12):1219–1228

    Article  Google Scholar 

  20. Gonella S, Ruzzene M (2008) Homogenization of vibrating periodic lattice structures. Appl Math Model 32(4):459–482

    Article  MathSciNet  MATH  Google Scholar 

  21. Moreau G, Caillerie D (1998) Continuum modeling of lattice structures in large displacement applications to buckling analysis. Comput Struct 68(1–3):181–189

    Article  MATH  Google Scholar 

  22. Liu M, Cao D, Zhu D (2020) Equivalent dynamic model of the space antenna truss with initial stress. AIAA J 58(4):1851–1863

    Article  Google Scholar 

  23. Dos Reis F, Ganghoffer J-F (2014) Homogenized elastoplastic response of repetitive 2D lattice truss materials. Comput Mater Sci 84:145–155

    Article  Google Scholar 

  24. Liu F, Jin D, Wen H (2017) Equivalent dynamic model for hoop truss structure composed of planar repeating elements. AIAA J 55(3):1058–1063

    Article  Google Scholar 

  25. Guo H, Shi C, Li M, Deng Z, Liu R (2018) Design and dynamic equivalent modeling of double-layer hoop deployable antenna. Int J Aerosp Eng 2018:2941981

    Google Scholar 

  26. Salehian A, Inman D, Cliff E (2006) Natural frequencies of an innovative space based radar antenna by continuum modeling. In: 47th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, Newport, Rhode Island

  27. Noor AK, Nemeth MP (1980) Micropolar beam models for lattice grids with rigid joints. Comput Methods Appl Mech Eng 21(2):249–263

    Article  MATH  Google Scholar 

  28. Salehian A, Inman D (2008) A reduced order micro-polar model of a space antenna with torsional joints. In: 49th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, Schaumburg, USA

  29. Burgardt B, Cartraud P (1999) Continuum modeling of beamlike lattice trusses using averaging methods. Comput Struct 73(1–5):267–279

    Article  MATH  Google Scholar 

  30. Lee U (1990) Dynamic continuum modeling of beamlike space structures using finite-element matrices. AIAA J 28(4):725–731

    Article  MATH  Google Scholar 

  31. Malek S, Wierzbicki T, Ochsendorf J (2014) Buckling of spherical cap gridshells: a numerical and analytical study revisiting the concept of the equivalent continuum. Eng Struct 75:288–298

    Article  Google Scholar 

  32. Jones TC, Bart-Smith H, Mikulas MM, Watson JJ (2007) Finite element modeling and analysis of large pretensioned space structures. J Spacecr Rocket 44(1):183–193

    Article  Google Scholar 

  33. Renton JD (1984) The beam-like behavior of space trusses. AIAA J 22(2):273–280

    Article  MATH  Google Scholar 

  34. Gaul L, Albrecht H, Wirnitzer J (2004) Semi-active friction damping of large space truss structures. Shock Vib 11(3–4):173–186

    Article  MATH  Google Scholar 

  35. Guo HW, Liu RQ, Deng ZQ (2011) Dynamic analysis and experiment of beamlike space deployable lattice truss. Adv Mater Res 199–200:1273–1280

    Article  Google Scholar 

  36. Zhang D, Li F, Shao F, Fan C (2019) Evaluation of equivalent bending stiffness by simplified theoretical solution for an FRP–aluminum deck–truss structure. KSCE J Civ Eng 23(1):367–375

    Article  Google Scholar 

  37. Noor AK (1988) Continuum modeling for repetitive lattice structures. Appl Mech Rev 41(7):285–296

    Article  Google Scholar 

  38. Dow JO, Su Z, Feng C, Bodley C (1985) Equivalent continuum representation of structures composed of repeated elements. AIAA J 23(10):1564–1569

    Article  Google Scholar 

  39. Dow JO, Huyer SA (1989) Continuum models of space station structures. J Aerosp Eng 2(4):220–238

    Article  Google Scholar 

  40. Lee U (1998) Equivalent continuum representation of lattice beams: spectral element approach. Eng Struct 20(7):587–592

    Article  Google Scholar 

  41. Salehian A, Seigler TM, Inman DJ (2007) Dynamic effects of a radar panel mounted on a truss satellite. AIAA J 45(7):1642–1654

    Article  Google Scholar 

  42. Teughels A, De Roeck G (2000) Continuum models for beam-and platelike lattice structures. In: Fourth international colloquium on computation of shell and spatial structures, Chaniam, Crete, Greece

  43. Li B, Qi X, Huang H, Xu W (2016) Modeling and analysis of deployment dynamics for a novel ring mechanism. Acta Astronaut 120:59–74

    Article  Google Scholar 

  44. Noor AK, Nemeth MP (1980) Analysis of spatial beamlike lattices with rigid joints. Comput Methods Appl Mech Eng 24(1):35–59

    Article  MATH  Google Scholar 

  45. Wu J-S, Chen J-M (1994) Dynamic analysis of spatial beam-like lattice girders. Comput Struct 53(4):961–981

    Article  MATH  Google Scholar 

  46. Tupper M, Munshi N, Beavers F, Gall K, Mikuls M, Meink T (2001) Developments in elastic memory composite materials for spacecraft deployable structures. In: 2001 IEEE aerospace conference proceedings (Cat. No. 01TH8542), pp 2541–2547

  47. Guzmán A, Rosales M, Filipich C (2019) Continuous one-dimensional model of a spatial lattice. Deformation, vibration and buckling problems. Eng Struct 2019(182):290–300

    Article  Google Scholar 

  48. Hefzy MS, Nayfeh AH (1986) Shear deformation plate continua of large double layered space structures. Int J Solids Struct 22(12):1455–1469

    Article  MATH  Google Scholar 

  49. Sun CT, Yang TY (1973) A continuum approach toward dynamics of gridworks. J Appl Mech 40(1):186–192

    Article  MATH  Google Scholar 

  50. Lamberson SE (1985) Equivalent continuum finite element modelling of plate-like space lattice structures. Ph.D. thesis, Air Force Institute of Technology, Wright-Patterson AFB OH

  51. Bai Z, Jiang X (2020) Dynamics analysis on planar articulated trusses considering cubic nonlinearity of joints. Int J Struct Stab Dyn 20(11):2050112

    Article  MathSciNet  Google Scholar 

  52. Webster M, Vande W (1991) Modelling beam-like space trusses with nonlinear joints. In: 32nd Structures, structural dynamics, and materials conference, Baltimore, MD, pp 2745–2754

  53. Zhang J, Deng Z, Guo H, Liu R (2014) Equivalence and dynamic analysis for jointed trusses based on improved finite elements. Proc Inst Mech Eng Part K J Multibody Dyn 228(k1):47–61

    Google Scholar 

  54. Gummer A, Sauer B (2012) Influence of contact geometry on local friction energy and stiffness of revolute joints. J Tribol 134(2):021402

    Article  Google Scholar 

  55. Salehian A, Inman D (2010) Micropolar continuous modeling and frequency response validation of a lattice structure. J Vib Acoust 132(1):011010

    Article  Google Scholar 

  56. Salehian A, Inman DJ (2008) Dynamic analysis of a lattice structure by homogenization: experimental validation. J Sound Vib 316(1–5):180–197

    Article  Google Scholar 

  57. Liu F, Wang L, Jin D, Wen H (2019) Equivalent continuum modeling of beam-like truss structures with flexible joints. Acta Mech Sin 35(5):1067–1078

    Article  MathSciNet  Google Scholar 

  58. Liu F, Wang L, Jin D, Liu X, Lu P (2020) Equivalent micropolar beam model for spatial vibration analysis of planar repetitive truss structure with flexible joints. Int J Mech Sci 165:105202

    Article  Google Scholar 

  59. Karttunen AT, Reddy JN, Romanoff J (2019) Two-scale constitutive modeling of a lattice core sandwich beam. Compos B Eng 160:66–75

    Article  Google Scholar 

  60. Antonio G, Antonino I, Francesco P, Pio PG (2017) Homogenization of a Vierendeel girder with elastic joints into an equivalent polar beam. J Mech Mater Struct 12(4):485–504

    Article  MathSciNet  Google Scholar 

  61. Tollenaere H, Caillerie D (1998) Continuous modeling of lattice structures by homogenization. Adv Eng Softw 29(7–9):699–705

    Article  Google Scholar 

  62. Penta F, Monaco M, Pucillo GP, Gesualdo A (2017) Periodic beam-like structures homogenization by transfer matrix eigen-analysis: a direct approach. Mech Res Commun 85:81–88

    Article  Google Scholar 

  63. Penta F, Esposito L, Pucillo GP, Rosiello V, Gesualdo A (2018) On the homogenization of periodic beam-like structures. Proc Struct Integr 8:399–409

    Google Scholar 

  64. Dos Reis F, Ganghoffer J (2012) Construction of micropolar continua from the asymptotic homogenization of beam lattices. Comput Struct 112:354–363

    Article  Google Scholar 

  65. Glaesener RN, Lestringant C, Telgen B, Kochmann DM (2019) Continuum models for stretching-and bending-dominated periodic trusses undergoing finite deformations. Int J Solids Struct 171:117–134

    Article  Google Scholar 

  66. Hao P, Wang B, Tian K, Li G, Du K, Niu F (2016) Efficient optimization of cylindrical stiffened shells with reinforced cutouts by curvilinear stiffeners. AIAA J 54(4):1–14

    Article  Google Scholar 

  67. Hao P, Wang B, Tian K, Li G, Sun Y, Zhou C (2017) Fast procedure for Non-uniform optimum design of stiffened shells under buckling constraint. Struct Multidiscip Optim 55:1503–1516

    Article  MathSciNet  Google Scholar 

  68. Wang B, Tian K, Hao P, Cai Y, Li Y, Sun Y (2015) Hybrid analysis and optimization of hierarchical stiffened plates based on asymptotic homogenization method. Compos Struct 132:136–147

    Article  Google Scholar 

  69. Kalamkarov AL, Andrianov IV, Danishevs’kyy VV (2009) Asymptotic homogenization of composite materials and structures. Appl Mech Rev 62(3):669–676

    Article  Google Scholar 

  70. Zhuang W, Yang C, Wu Z (2019) Modal and aeroelastic analysis of trapezoidal corrugated-core sandwich panels in supersonic flow. Int J Mech Sci 157:267–281

    Article  Google Scholar 

  71. Luongo A, Zulli D (2019) Free and forced linear dynamics of a homogeneous model for beam-like structures. Meccanica 55(3):907–925

    MathSciNet  MATH  Google Scholar 

  72. Desmoulins A, Kochmann DM (2017) Local and nonlocal continuum modeling of inelastic periodic networks applied to stretching-dominated trusses. Comput Methods Appl Mech Eng 313:85–105

    Article  MathSciNet  MATH  Google Scholar 

  73. Gantes C, Connor JJ, Logcher RD (1994) Equivalent continuum model for deployable flat lattice structures. J Aerosp Eng 7(1):72–91

    Article  Google Scholar 

  74. Kenner WS, Knight NF (1998) Soft lattice truss static polynomial response using energy methods. AIAA J 36(6):1100–1104

    Article  Google Scholar 

  75. Lake MS, Klang EC (1992) Generation and comparison of globally isotropic space-filling truss structures. AIAA J 30(5):1416–1424

    Article  MATH  Google Scholar 

  76. Sun C, Liebbe S (1986) A global-local approach to solving vibration of large truss structures. In: 27th Structures, structural dynamics and materials conference

  77. Sun C, Liebbe S (1990) Global-local approach to solving vibration of large truss structures. AIAA J 28(2):303–308

    Article  MATH  Google Scholar 

  78. Stephen N, Zhang Y (2004) Eigenanalysis and continuum modelling of an asymmetric beam-like repetitive structure. Int J Mech Sci 46(8):1213–1231

    Article  MATH  Google Scholar 

  79. Stephen N, Zhang Y (2006) Eigenanalysis and continuum modelling of pre-twisted repetitive beam-like structures. Int J Solids Struct 43(13):3832–3855

    Article  MATH  Google Scholar 

  80. Necib B, Sun C (1989) Analysis of truss beams using a high order Timoshenko beam finite element. J Sound Vib 130(1):149–159

    Article  MATH  Google Scholar 

  81. Murphey T (2006) Symbolic equations for the stiffness and strength of straight longeron trusses. In: 47th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference

  82. Fazli N, Abedian A (2011) Design of tensegrity structures for supporting deployable mesh antennas. Sci Iran 18(5):1078–1087

    Article  Google Scholar 

  83. Miura K, Tanizawa K (2000) Tension truss antenna—concept, reality and future. In: IUTAM-IASS symposium on deployable structures: theory and applications, pp 291–300

  84. Tibert G (2002) Deployable tensegrity structures for space applications. Ph.D. thesis, Royal Institute of Technology, Stochholm, Sweden

  85. Miura K, Miyazaki Y (1990) Concept of the tension truss antenna. AIAA J 28(6):1098–1104

    Article  Google Scholar 

  86. Kebiche K, Aoual MK, Motro R (2008) Continuum models for systems in a selfstress state. Int J Space Struct 23(2):103–115

    Article  Google Scholar 

  87. Yildiz K, Lesieutre GA (2019) Effective beam stiffness properties of n-Strut cylindrical tensegrity towers. AIAA J 57(5):2185–2194

    Article  Google Scholar 

  88. Al Sabouni-Zawadzka A, Gilewski W (2015) Technical coefficients in continuum models of an anisotropic tensegrity module. Proc Eng 111:871–876

    Article  Google Scholar 

  89. Al Sabouni-Zawadzka A, Gilewski W (2016) On orthotropic properties of tensegrity structures. Proc Eng 153:887–894

    Article  MATH  Google Scholar 

  90. Al Sabouni-Zawadzka A, Klosowska J, Obara P, Gilewski W (2016) Continuum model of orthotropic tensegrity plate-like structures with self-stress included. Eng Trans 64(4):501–508

    Google Scholar 

  91. Zhang Y, Chen W, Xie C, Peng F (2018) Modal equivalent method of full-area membrane and grid membrane. Aerosp Syst 1(2):129–137

    Article  Google Scholar 

  92. Liu M, Cao D, Zhu D (2020) Coupled vibration analysis for equivalent dynamic model of the space antenna truss. Appl Math Model 89:285–298

    Article  MathSciNet  MATH  Google Scholar 

  93. Banerjee JR (2000) Explicit modal analysis of an axially loaded Timoshenko beam with bending-torsion coupling. J Appl Mech 67(2):307–313

    Article  MATH  Google Scholar 

  94. Su H, Banerjee JR (2015) Development of dynamic stiffness method for free vibration of functionally graded Timoshenko beams. Comput Struct 147:107–116

    Article  Google Scholar 

  95. Stephen N, Zhang Y (2006) Coupled tension–torsion vibration of repetitive beam-like structures. J Sound Vib 293(1–2):253–265

    Article  Google Scholar 

  96. Banerjee JR, Williams FW (1994) Coupled bending-torsional dynamic stiffness matrix of an axially loaded Timoshenko beam element. Int J Solids Struct 31(6):749–762

    Article  MATH  Google Scholar 

  97. Banerjee JR (1989) Coupled bending–torsional dynamic stiffness matrix for beam elements. Int J Numer Methods Eng 28(6):1283–1298

    Article  MATH  Google Scholar 

  98. Bercin AN, Tanaka M (1997) Coupled flexural–torsional vibrations of Timoshenko beams. J Sound Vib 207(1):47–59

    Article  Google Scholar 

  99. Han H, Liu L, Cao D (2020) Dynamic modeling for rotating composite Timoshenko beam and analysis on its bending-torsion coupled vibration. Appl Math Model 78:773–791

    Article  MathSciNet  MATH  Google Scholar 

  100. Lee JW, Lee JY (2017) Free vibration analysis of functionally graded Bernoulli-Euler beams using an exact transfer matrix expression. Int J Mech Sci 122:1–17

    Article  Google Scholar 

  101. Salehian A, Chen Y (2012) On strain-rate dependence of kinetic energy in homogenization approach: theory and experiment. AIAA J 50(10):2029–2033

    Article  Google Scholar 

  102. Guo HW, Liu RQ, Deng ZQ (2011) Dynamic analysis and experiment of beamlike space deployable lattice truss. Adv Mater Res 199:1273–1280

    Article  Google Scholar 

  103. Santana MV, Gonçalves PB, Silveira RA (2019) Nonlinear oscillations and dynamic stability of an elastoplastic pyramidal truss. Nonlinear Dyn 98:2847–2877

    Article  MATH  Google Scholar 

  104. Murakami H (2001) Static and dynamic analyses of tensegrity structures. Part 1. Nonlinear equations of motion. Int J Solids Struct 38(20):3599–3613

    Article  MATH  Google Scholar 

  105. Tran HC, Lee J (2011) Geometric and material nonlinear analysis of tensegrity structures. Acta Mech Sin 27(6):938–949

    Article  MathSciNet  MATH  Google Scholar 

  106. Nuhoglu A, Korkmaz KA (2011) A practical approach for nonlinear analysis of tensegrity systems. Eng Comput 27(4):337–345

    Article  Google Scholar 

  107. Shi H, Salim H, Shi Y, Wei F (2015) Geometric and material nonlinear static and dynamic analysis of space truss structures. Mech Based Des Struct Mach 43(1):38–56

    Article  Google Scholar 

  108. Driemeier L, Proenca SPB, Alves ML (2005) A contribution to the numerical nonlinear analysis of three-dimensional truss systems considering large strains, damage and plasticity. Commun Nonlinear Sci Numer Simul 10(5):515–535

    Article  MATH  Google Scholar 

  109. Kan Z, Peng H, Chen B, Zhong W (2018) Nonlinear dynamic and deployment analysis of clustered tensegrity structures using a positional formulation FEM. Compos Struct 187:241–258

    Article  Google Scholar 

  110. Faroughi S, Lee J (2014) Geometrical nonlinear analysis of tensegrity based on a co-rotational method. Adv Struct Eng 17(1):41–51

    Article  Google Scholar 

  111. Li W, Ma H (2019) A novel model order reduction scheme for fast and accurate material nonlinear analyses of large-scale engineering structures. Eng Struct 193:238–257

    Article  Google Scholar 

  112. Rezaiee-Pajand M, Hashemian M, Bohluly A (2017) A novel time integration formulation for nonlinear dynamic analysis. Aerosp Sci Technol 69:625–635

    Article  Google Scholar 

  113. McCallen D, Romstad K (1990) A continuum model for lattice structures with geometric and material nonlinearities. Comput Struct 37(5):795–822

    Article  Google Scholar 

  114. McCallen DB, Romstad K (1988) A continuum model for the nonlinear analysis of beam-like lattice structures. Comput Struct 29(2):177–197

    Article  MATH  Google Scholar 

  115. Zhang W, Chen J, Zhang Y, Yang X (2017) Continuous model and nonlinear dynamic responses of circular mesh antenna clamped at one side. Eng Struct 151:115–135

    Article  Google Scholar 

  116. Zhang W, Wu R, Behdinan K (2019) Nonlinear dynamic analysis near resonance of a beam-ring structure for modeling circular truss antenna under time-dependent thermal excitation. Aerosp Sci Technol 86:296–311

    Article  Google Scholar 

  117. Liu G, Chen G, Cui F (2021) Nonlinear dynamic analysis of ring truss antenna equivalent to the cylindrical shell with thermal excitation. Eur J Mech A Solids 85:104109

    Article  MathSciNet  MATH  Google Scholar 

  118. Zhang W, Xi A, Siriguleng B, Liu G (2019) An equivalent cylindrical shell model of vibration analysis based on simplified repeating unit cell for ring truss structure. J Sound Vib 459:114847

    Article  Google Scholar 

  119. Cao S, Huo M, Qi N, Zhao C, Sun L (2020) Extended continuum model for dynamic analysis of beam-like truss structures with geometrical nonlinearity. Aerosp Sci Technol 103:105927

    Article  Google Scholar 

  120. Liu H, Lv J (2017) An equivalent continuum multiscale formulation for 2D geometrical nonlinear analysis of lattice truss structure. Compos Struct 160:335–348

    Article  Google Scholar 

  121. Wu L, Tiso P (2016) Nonlinear model order reduction for flexible multibody dynamics: a modal derivatives approach. Multibody Syst Dyn 36(4):405–425

    Article  MathSciNet  MATH  Google Scholar 

  122. Jain S, Tiso P (2018) Simulation-free hyper-reduction for geometrically nonlinear structural dynamics: a quadratic manifold lifting approach. J Comput Nonlinear Dyn 13(7):071003

    Article  Google Scholar 

  123. Jain S, Tiso P, Rutzmoser JB, Rixen DJ (2017) A quadratic manifold for model order reduction of nonlinear structural dynamics. Comput Struct 188:80–94

    Article  Google Scholar 

  124. Piccardo G, Tubino F, Luongo A (2016) Equivalent nonlinear beam model for the 3-D analysis of shear-type buildings: application to aeroelastic instability. Int J Nonlinear Mech 80:52–65

    Article  Google Scholar 

  125. D’Annibale F, Ferretti M, Luongo A (2019) Shear-shear-torsional homogenous beam models for nonlinear periodic beam-like structures. Eng Struct 184:115–133

    Article  Google Scholar 

  126. Pal RK, Ruzzene M, Rimoli JJ (2016) A continuum model for nonlinear lattices under large deformations. Int J Solids Struct 96:300–319

    Article  Google Scholar 

  127. Goncalves BR, Karttunen AT, Romanoff J (2019) A nonlinear couple stress model for periodic sandwich beams. Compos Struct 212:586–597

    Article  Google Scholar 

  128. Nampally P, Karttunen AT, Reddy JN (2019) Nonlinear finite element analysis of lattice core sandwich beams. Eur J Mech A Solids 74:431–439

    Article  MathSciNet  MATH  Google Scholar 

  129. Chowdhury SR, Reddy JN (2019) Geometrically exact micropolar Timoshenko beam and its application in modelling sandwich beams made of architected lattice core. Compos Struct 226:111228

    Article  Google Scholar 

  130. Liu F, Wang L, Jin D, Liu X, Lu P (2021) Equivalent beam model for spatial repetitive lattice structures with hysteretic nonlinear joints. Int J Mech Sci 200:106449

    Article  Google Scholar 

  131. Witteveen W, Pichler F (2014) Efficient model order reduction for the dynamics of nonlinear multilayer sheet structures with trial vector derivatives. Shock Vib 2014:913136

    Google Scholar 

  132. Van Do VN, Lee C-H (2017) Bending analyses of FG-CNTRC plates using the modified mesh-free radial point interpolation method based on the higher-order shear deformation theory. Compos Struct 168:485–497

    Article  Google Scholar 

  133. Carlberg K, Ray J, van Bloemen Waanders B (2015) Decreasing the temporal complexity for nonlinear, implicit reduced-order models by forecasting. Comput Methods Appl Mech Eng 289:79–103

    Article  MathSciNet  MATH  Google Scholar 

  134. ElNady K, Goda I, Ganghoffer J-F (2016) Computation of the effective nonlinear mechanical response of lattice materials considering geometrical nonlinearities. Comput Mech 58(6):957–979

    Article  MathSciNet  MATH  Google Scholar 

  135. Givois A, Grolet A, Thomas O, Deü J-F (2019) On the frequency response computation of geometrically nonlinear flat structures using reduced-order finite element models. Nonlinear Dyn 97(2):1747–1781

    Article  MATH  Google Scholar 

  136. Ma G, Xu M, Gao B, Zhang S, Hu Z (2017) The low frequency vibration control of the hoop truss structure with extended arm. J Low Freq Noise Vib Active Control 36(3):294–305

    Article  Google Scholar 

  137. Xing Z, Zheng G (2014) Deploying process modeling and attitude control of a satellite with a large deployable antenna. Chin J Aeronaut 27(2):299–312

    Article  MathSciNet  Google Scholar 

  138. Nakka YK, Chung S-J, Allison JT, Aldrich JB, Alvarez-Salazar OS (2019) Nonlinear attitude control of a spacecraft with distributed actuation of solar arrays. J Guid Control Dyn 42(3):458–475

    Article  Google Scholar 

  139. He W, Ge SS (2015) Dynamic modeling and vibration control of a flexible satellite. IEEE Trans Aerosp Electron Syst 51(2):1422–1431

    Article  Google Scholar 

  140. Salehian A, Seigler TM, Inman DJ (2006) Control of the continuum model of a large flexible space structure, ASME. Int Mech Eng Congr Expos 2006:561–570

    Google Scholar 

  141. Balas M (1982) Trends in large space structure control theory: fondest hopes, wildest dreams. IEEE Trans Autom Control 27(3):522–535

    Article  MATH  Google Scholar 

  142. Park Y-M, Kim K-J (2013) Semi-active vibration control of space truss structures by friction damper for maximization of modal damping ratio. J Sound Vib 332(20):4817–4828

    Article  Google Scholar 

  143. Preumont A, De Marneffe B, Deraemaeker A, Bossens F (2008) The damping of a truss structure with a piezoelectric transducer. Comput Struct 86(3–5):227–239

    Article  Google Scholar 

  144. Gosiewski Z, Koszewnik AP (2013) Fast prototyping method for the active vibration damping system of mechanical structures. Mech Syst Signal Process 36(1):136–151

    Article  Google Scholar 

  145. Li D, Liu W, Jiang J, Xu R (2011) Placement optimization of actuator and sensor and decentralized adaptive fuzzy vibration control for large space intelligent truss structure. Sci China Technol Sci 54(4):853–861

    Article  MATH  Google Scholar 

  146. Tavakolpour-Saleh AR, Haddad MA (2017) A fuzzy robust control scheme for vibration suppression of a nonlinear electromagnetic-actuated flexible system. Mech Syst Signal Process 86:86–107

    Article  Google Scholar 

  147. Luo Y, Zhang Y, Xu M, Fu K, Ye L, Xie S, Zhang X (2019) Improved vibration attenuation performance of large hoop truss structures via a hybrid control algorithm. Smart Mater Struct 28(6):065007

    Article  Google Scholar 

  148. Padhi R, Ali SF (2009) An account of chronological developments in control of distributed parameter systems. Annu Rev Control 33(1):59–68

    Article  Google Scholar 

  149. Nurre G, Ryan R, Scofield H, Sims J (1984) Dynamics and control of large space structures. J Guid Control Dyn 7(5):514–526

    Article  MATH  Google Scholar 

  150. Yang B, Tan CA (1992) Transfer functions of one-dimensional distributed parameter systems. J Appl Mech 59(4):1009–1014

    Article  MathSciNet  MATH  Google Scholar 

  151. Lamberson S, Yang T (1985) Continuum plate finite elements for vibration analysis and feedback control of space lattice structures. Comput Struct 20(1–3):583–592

    Article  MATH  Google Scholar 

  152. Bennett W, Kwatny H (1989) Continuum modeling of flexible structures with application to vibration control. AIAA J 27(9):1264–1273

    Article  MathSciNet  MATH  Google Scholar 

  153. Balakrishnan AV (1991) Combined structures-controls-integrated optimization using distributed parameter models. Comput Mech 8(2):125–133

    Article  MATH  Google Scholar 

  154. Balakrishnan AV (1991) Compensator design for stability enhancement with collocated controllers. IEEE Trans Autom Control 36(9):994–1007

    Article  MathSciNet  MATH  Google Scholar 

  155. Liu F, Jin D, Wen H (2016) Optimal vibration control of curved beams using distributed parameter models. J Sound Vib 384:15–27

    Article  Google Scholar 

  156. Liu X, Liu H, Du C, Lu P, Jin D, Liu F (2020) Distributed active vibration cooperative control for flexible structure with multiple autonomous substructure model. J Vib Control 26(21–22):2026–2036

    Article  MathSciNet  Google Scholar 

  157. Asghari M, Kahrobaiyan M, Ahmadian M (2010) A nonlinear Timoshenko beam formulation based on the modified couple stress theory. Int J Eng Sci 48(12):1749–1761

    Article  MathSciNet  MATH  Google Scholar 

  158. Ghayesh MH, Amabili M, Farokhi H (2013) Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory. Int J Eng Sci 63:52–60

    Article  MathSciNet  MATH  Google Scholar 

  159. Reddy J (2011) Microstructure-dependent couple stress theories of functionally graded beams. J Mech Phys Solids 59(11):2382–2399

    Article  MathSciNet  MATH  Google Scholar 

  160. He G, Cao D, Cao Y, Huang W (2020) Investigation on global analytic modes for a three-axis attitude stabilized spacecraft with jointed-panels. Aerosp Sci Technol 106:106087

    Article  Google Scholar 

  161. Liu L, Cao D, Wei J, Tan X, Yu T (2017) Rigid-flexible coupling dynamic modeling and vibration control for a three-axis stabilized spacecraft. J Vib Acoust Trans ASME 139(4):041006

    Article  Google Scholar 

  162. Cao Y, Cao D, Huang W (2019) Dynamic modeling and vibration control for a T-shaped bending and torsion structure. Int J Mech Sci 157–158:773–786

    Article  Google Scholar 

  163. Cao D, Wang L, Wei J, Nie Y (2020) Natural frequencies and global mode functions for flexible jointed-panel structures. J Aerosp Eng 33(4):04020018

    Article  Google Scholar 

  164. Wei J, Cao D, Wang L, Huang H, Huang W (2017) Dynamic modeling and simulation of flexible spacecraft with flexible joints. Int J Mech Sci 130:558–570

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant Nos. 11732005 and 12002298), National Key Research and Development Program of China (Grant No. 2020YFB1506702-03), and the Civil Aerospace Project (Grant No. D020213).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dengqing Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Cao, D. & Wei, J. Survey on Equivalent Continuum Modeling for Truss Structures and Their Nonlinear Dynamics and Vibration Control. J. Vib. Eng. Technol. 10, 667–687 (2022). https://doi.org/10.1007/s42417-021-00398-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-021-00398-4

Keywords

Navigation