Skip to main content
Log in

Enhancing grid stability: a hybrid control strategy for DFIG-based wind turbines to mitigate sub-synchronous oscillations

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

The global development of wind energy conversion systems is continually evolving, and it has emerged as a crucial element in the functioning of electrical grids across most nations. The doubly fed induction generator (DFIG), which is the most widely used wind turbine, has received considerable attention. Nonetheless, the incorporation of DFIG-based wind turbines into power grids equipped with series compensation renders them susceptible to sub-synchronous resonance (SSR). Within the realm of static SSR, two crucial factors contribute to this phenomenon: the induction generator effect (IGE) and torsional interactions (TI). This study examines the potential use of stability boosting supplementary controllers (SBSC) along with voltage source converter based FACTS devices to mitigate steady-state SSR under weak grid conditions. SBSC consists of a sub-synchronous resonance damping controller (SSRDC) and an inertia-based controller (IBC), which are incorporated into the conventional back-back controller of the DFIG. The SSRDC uses an appropriate input control signal that is highly appreciable for mitigating the IGE effects of SSR and is provided in the best location of the rotor-side converter and grid-side converter. IBC is introduced to suppress the multi-mass drive train TI that occurs owing to the influence of the mechanical dynamics in the electrical network. Variable compensation in the transmission line is effectively provided with the help of a static synchronous series compensator. The controller parameters of the SBSC and flexible AC transmission system (FACTS) devices are optimized using particle swarm optimization. Small-signal stability investigations for the proposed hybrid controllers involve employing the eigenvalue method, and verification of these findings is conducted through time-domain analysis. To substantiate the superior performance of the proposed hybrid controller strategy, an experimental validation is conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Availability of data and materials

Not applicable.

Abbreviations

DFIG:

Doubly fed induction generator

IGE:

Induction generator effect

SBSC:

Stability boosting supplementary controllers

IBC:

Inertia-based controller

TI:

Torsional interactions

VSC:

Voltage source converter

SSRDC:

Sub-synchronous resonance damping controller

RSC:

Rotor side converter

GSC:

Grid side converter

SSSC:

Static synchronous series compensator

FACTS:

Flexible AC transmission systems

PSO :

Particle swarm optimization

SSO:

Sub-synchronous oscillations

TCSC :

Thyristor controlled series compensator

GCSC :

Gate controlled series compensator

WF :

Wind farms

SCR:

Short circuit ratio

RPDC :

Reactive power damping controller

APDC :

Active power damping controller

\(\rho \) :

Air density

\({V}_{{\text{w}}}\) :

Wind speed

λ:

Blade tip speed radio

\(\beta \) :

Pitch angle of wind turbine

\({A}_{{\text{r}}}\) :

Area flounced by the rotor

\({k}_{{\text{ps}}},\) \({k}_{{\text{is}}}\) :

Proportional and Integral constants of speed controller

\({k}_{{\text{pp}}}\), \({k}_{{\text{ip}}}\) :

Proportional and Integral constants of power controller

\({\omega }_{r}, {\omega }_{m}\) :

DFIG rotor speed and turbine rotation speed

\({P}_{{\text{e}}},{T}_{{\text{e}}},{T}_{{\text{m}}}\) :

Electromagnetic power, Electromagnetic torque and mechanical torque

\({P}_{{\text{ref}}},{T}_{{\text{ref}}}\) :

Reference value of electromagnetic power and torque

\({H}_{{\text{t}}},{H}_{{\text{g}}}\) :

Inertia constant of turbine and generator

\({B}_{{\text{t}}}\), \({B}_{{\text{g}}}\) :

Frictional damping coefficient of turbine and generator

\({T}_{{\text{ls}}},{T}_{{\text{hs}}}\) :

Torque of low-speed and high-speed shaft

\({K}_{{\text{sh}}}, {D}_{{\text{sh}}}\) :

Shaft spring and damping constants

\({n}_{{\text{t}}},{n}_{{\text{g}}}\) :

Teeth of gear of the wind turbine and generator

\({\theta }_{s}\) :

Torsion angle of the drive train

\({f}_{s} ,{ f}_{n}\) :

Synchronous frequency and natural frequency of the system

\({X}_{c},\) \({X}_{L}\) :

Reactance of series capacitor and inductive reactance offered by the transmission line and transformer ( \({X}_{l}+{X}_{T} )\)

\({R}_{{\text{r}}}\) :

Rotor resistance

\({K}_{{\text{SSRDC}}}\) :

Gain of SSRDC

\({T}_{1{\text{SSRDC}}}, {T}_{2{\text{SSRDC}}}\) :

Time constants of the lead-lag block of the phase-shifter in SSRDC

\({n}_{{\text{p}}}\) :

Number of pole pairs

\({i}_{{\text{qs}}},{i}_{{\text{ds}}}{,i}_{{\text{qr}}},{i}_{{\text{dr}}}\) :

Stator and rotor current under qd-axis

\({\phi }_{k}\),\({\psi }_{k}\) :

Left and right eigenvector associated with the SSO mode

\({c}_{j}\) :

Row of C corresponding to the system output signal

\({b}_{i}\) :

Column of B corresponding to the system output signal

C & B :

Matrix in the state-space form of the overall system

\({k}_{f},{T}_{f}\) :

Proportional gain and the effective time constant of IBC.

\(\zeta ,\) \({w}_{n}\) :

Damping ratio and natural frequency of drive train

\({E}_{{\text{dg}}},{E}_{{\text{qg}}}\) :

WTG output voltage in d and q axis

\(V\) :

Grid voltage

\({R}_{L},\) \({X}_{L}\) :

Resistance and reactance of transmission line.

Φ,\(\gamma \) :

Phase angle and leading phase angle of transmission line current

\(E^{\prime}_{SCd}\) , \(E^{\prime}_{SCq}\) :

In phase and quadrature components of the injected voltage in SSSC

\({V}_{{\text{dc}}}\) :

DC voltage source

\({i}_{D},{i}_{Q}\) :

d and q axis transmission line current

\({E}_{D},{E}_{Q}\) :

d and q axis DFIG terminal voltages

\({R}_{{\text{sys}}},{X}_{{\text{sys}}}\) :

Resistance and inductive reactance connected between DFIG to the infinite bus system

\({V}_{{\text{cd}}}, {V}_{{\text{cq}}}\) :

Series capacitor voltage in the transmission line

\({K}_{m}\) :

Modulation index

\(k\) :

Transformation ratio of the coupling transformer

\(E^\prime_{SCA}\), \(E^\prime_{SCR}\) :

In phase and reactive component of compensated voltage in quadrature with the line current.

\(\gamma \),\({\beta }_{d}\) :

Phase angle and dead angle of SSSC

\({\alpha }_{i},{\xi }_{i}, { \beta }_{i}\) :

Real part, damping ratio and imaginary parts of eigenvalue \({\uplambda }_{i}\)

\({T}_{d}\) :

Time constant of SSSC

\({k}_{{\text{psssc}}}, {k}_{{\text{isssc}}}\) :

Proportional and Integral constants of SSSC

\({X}_{c}\) :

Compensation provided by SSSC

\(s\) :

Laplace operator

\(d,q\) :

Direct- and quadrature-axis components with respect to synchronized reference frame

\(0\) :

Initial values in steady-state condition

References

  1. Zobaa AF, Bansal RC (2011) Handbook of renewable energy technology. Handb Renew Energy Technol. https://doi.org/10.1142/9789814289078

    Article  Google Scholar 

  2. Rahman MT, Hasan KN, Sokolowski P (2022) Evaluation of wind farm aggregation using probabilistic clustering algorithms for power system stability assessment. Sustain Energy Grids Netw 30:100678. https://doi.org/10.1016/j.segan.2022.100678

    Article  Google Scholar 

  3. Gautam D and Vittal V (2009) Impact of DFIG based wind turbine generators on transient and small signal stability of power systems. In: 2009 IEEE Power Energy Soc. Gen. Meet. PES ’09, vol. 24, no. 3, pp. 1426–1434. https://doi.org/10.1109/PES.2009.5275847

  4. Lee Joyce and Zhao Feng, Global Wind Report (2022), [Online]. Available: https://gwec.net/global-wind-report-2022/

  5. Ali MT, Ghandhari M, Hatnefors L (2019) Optimal tuning and placement of POD for SSCI mitigation in DFIG-based power system. In: 2019 IEEE Milan PowerTech, PowerTech 2019. https://doi.org/10.1109/PTC.2019.8810891

  6. Edrah M et al (2020) Effects of POD control on a DFIG wind turbine structural system. IEEE Trans Energy Convers 35(2):765–774. https://doi.org/10.1109/TEC.2020.2966181

    Article  Google Scholar 

  7. Falehi AD (2020) Optimal power tracking of DFIG based wind turbine using MOGWO-based fractional-order sliding mode controller. J Sol Energy Eng Trans ASME 142(3):1–12. https://doi.org/10.1115/1.4044977

    Article  Google Scholar 

  8. Darvish Falehi A (2020) An innovative optimal RPO-FOSMC based on multi-objective grasshopper optimization algorithm for DFIG-based wind turbine to augment MPPT and FRT capabilities. Chaos Solitons Fractals 130:109407. https://doi.org/10.1016/j.chaos.2019.109407

    Article  MathSciNet  Google Scholar 

  9. Darvish Falehi A, Torkaman H (2021) Promoted supercapacitor control scheme based on robust fractional-order super-twisting sliding mode control for dynamic voltage restorer to enhance FRT and PQ capabilities of DFIG-based wind turbine. J. Energy Storage 42:102983. https://doi.org/10.1016/j.est.2021.102983

    Article  Google Scholar 

  10. Yao J, Wang X, Li J, Liu R, Zhang H (2019) Sub-synchronous resonance damping control for series-compensated DFIG-based wind farm with improved particle swarm optimization algorithm. IEEE Trans Energy Convers 34(2):849–859. https://doi.org/10.1109/TEC.2018.2872841

    Article  Google Scholar 

  11. Vinayagam A, Veerasamy V, Tariq M, Aziz A (2022) Heterogeneous learning method of ensemble classifiers for identification and classification of power quality events and fault transients in wind power integrated microgrid. Sustain Energy Grids Netw 31:100752. https://doi.org/10.1016/j.segan.2022.100752

    Article  Google Scholar 

  12. Erol H (2021) Stability analysis of pitch angle control of large wind turbines with fractional order PID controller. Sustain Energy Grids Netw 26:100430. https://doi.org/10.1016/j.segan.2021.100430

    Article  Google Scholar 

  13. Darvish Falehi A, Rafiee M (2018) LVRT/HVRT capability enhancement of DFIG wind turbine using optimal design and control of novel PIλDμ-AMLI based DVR. Sustain Energy Grids Netw 16:111–125. https://doi.org/10.1016/j.segan.2018.06.001

    Article  Google Scholar 

  14. Mokhtari M, Khazaei J, Nazarpour D (2013) Sub-synchronous resonance damping via doubly fed induction generator. Int J Electr Power Energy Syst 53:876–883. https://doi.org/10.1016/j.ijepes.2013.05.054

    Article  Google Scholar 

  15. Faried SO, Unal I, Rai D, Mahseredjian J (2013) Utilizing DFIG-based wind farms for damping subsynchronous resonance in nearby turbine-generators. IEEE Trans Power Syst 28(1):452–459. https://doi.org/10.1109/TPWRS.2012.2196530

    Article  Google Scholar 

  16. Li N, Wang L, Yang H, Ma H (2019) Stability Analysis for SSR of DFIG-Based Wind Farm Considering STATCOM Capacity Constraint. In: 2019 22nd Int. Conf. Electr. Mach. Syst. ICEMS, pp 5–10. https://doi.org/10.1109/ICEMS.2019.8922512

  17. Verma N, Kumar N, Gupta S, Malik H, García Márquez FP (2023) Review of sub-synchronous interaction in wind integrated power systems: classification, challenges, and mitigation techniques. Prot Control Mod Power Syst. https://doi.org/10.1186/s41601-023-00291-0

    Article  Google Scholar 

  18. Mohammadpour HA, Santi E (2015) Optimal adaptive sub-synchronous resonance damping controller for a series-compensated doubly-fed induction generator-based wind farm. IET Renew Power Gener 9(6):669–681. https://doi.org/10.1049/iet-rpg.2014.0155

    Article  Google Scholar 

  19. Fateh D, Birjandi AAM, Guerrero JM (2020) A subsynchronous resonance prevention for DFIG-based wind farms. Turkish J Electr Eng Comput Sci 28(5):2670–2685. https://doi.org/10.3906/ELK-1912-177

    Article  Google Scholar 

  20. Mohammadpour HA, Shin YJ, Santi E (2014) SSR analysis of a DFIG-based wind farm interfaced with a gate-controlled series capacitor. In: Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, pp 3110–3117. https://doi.org/10.1109/APEC.2014.6803749

  21. Reza H, Amin S, Mohsen H, Mahmoud K, Mahdi L (2023) Transient stability analysis of DFIG-based wind farm-integrated power system considering gearbox ratio and reactive power control. Electr Eng. https://doi.org/10.1007/s00202-023-01906-3

    Article  Google Scholar 

  22. Ganesan M, Sreenivasulu VKM, Rajendra DB (2023) Coordinated control of rotor side converter and grid side converter on 15 kW DFIG using cascaded feedback linearization controllers. Electr Eng. https://doi.org/10.1007/s00202-023-01926-z

    Article  Google Scholar 

  23. Fan L, Miao Z (2012) Mitigating SSR using DFIG-based wind generation. IEEE Trans Sustain Energy 3(3):349–358. https://doi.org/10.1109/TSTE.2012.2185962

    Article  Google Scholar 

  24. Wang Y, Meng J, Zhang X, Xu L (2015) Control of PMSG-based wind turbines for system inertial response and power oscillation damping. IEEE Trans Sustain Energy 6(2):565–574. https://doi.org/10.1109/TSTE.2015.2394363

    Article  Google Scholar 

  25. Edrah M et al (2021) Electromechanical interactions of full scale converter wind turbine with power oscillation damping and inertia control. Int J Electr Power Energy Syst. https://doi.org/10.1016/j.ijepes.2021.107522

    Article  Google Scholar 

  26. Mohammadpour HA, Santi E (2015) SSR damping controller design and optimal placement in rotor-side and grid-side converters of series-compensated DFIG-based wind farm. IEEE Trans Sustain Energy 6(2):388–399. https://doi.org/10.1109/TSTE.2014.2380782

    Article  Google Scholar 

  27. Abdeen M, Li H, Mohamed MAEH, Kamel S, Khan B, Chai Z (2022) Sub-synchronous interaction damping controller for a series-compensated DFIG-based wind farm. IET Renew Power Gener 16(5):933–944. https://doi.org/10.1049/rpg2.12400

    Article  Google Scholar 

  28. Abdeen M, Ali MH, Soliman AMA, Eslami M, Kamel S (2023) Improved methodology for damping sub-synchronous oscillation in a series-compensated DFIG-based wind farm. IET Gener Transm Distrib 17(14):3333–3341. https://doi.org/10.1049/gtd2.12906

    Article  Google Scholar 

  29. Moharana A, Varma RK, Seethapathy R (2014) SSR alleviation by STATCOM in induction-generator-based wind farm connected to series compensated line. IEEE Trans Sustain Energy 5(3):947–957. https://doi.org/10.1109/TSTE.2014.2311072

    Article  Google Scholar 

  30. Rohit C, Darji P, Jariwala H (2022) Modelling and control of static synchronous series compensator interfaced with DFIG-based wind farm using PSO for SSR alleviation. Int J Ambient Energy 43(1):6449–6462. https://doi.org/10.1080/01430750.2021.2023630

    Article  Google Scholar 

  31. Xi X, Geng H, Yang G, Li S, Gao F (2018) Torsional oscillation damping control for DFIG-based wind farm participating in power system frequency regulation. IEEE Trans Ind Appl 54(4):3687–3701. https://doi.org/10.1109/TIA.2018.2814559

    Article  Google Scholar 

  32. Mei F, Pal B (2007) Modal analysis of grid-connected doubly fed induction generators. IEEE Trans Energy Convers 22(3):728–736. https://doi.org/10.1109/TEC.2006.881080

    Article  Google Scholar 

  33. Fateh F, White WN, Gruenbacher D (2017) Torsional vibrations mitigation in the drivetrain of DFIG-based grid-connected wind Turbine. IEEE Trans Ind Appl 53(6):5760–5767. https://doi.org/10.1109/TIA.2017.2730159

    Article  Google Scholar 

  34. Mohammadpour HA, Santi E (2014) Sub-synchronous resonance analysis in DFIG-based wind farms: Mitigation methods - TCSC, GCSC, and DFIG controllers - Part II. In: 2014 IEEE Energy Convers. Congr. Expo. ECCE 2014, pp. 1550–1557. https://doi.org/10.1109/ECCE.2014.6953603

  35. Bhukya J, Mahajan V (2019) Optimization of damping controller for PSS and SSSC to improve stability of interconnected system with DFIG based wind farm. Int J Electr Power Energy Syst. https://doi.org/10.1016/j.ijepes.2019.01.017

    Article  Google Scholar 

  36. Kunwar A, Bansal RC (2016) A supplementary controller for improvement of small signal stability of power system with wind power penetration. Electr Power Compon Syst 44(16):1825–1838. https://doi.org/10.1080/15325008.2016.1183726

    Article  Google Scholar 

  37. Selvaraj G, Rajangam K (2019) Multi-objective grey wolf optimizer algorithm for combination of network reconfiguration and D-STATCOM allocation in distribution system. Int Trans Electr Energy Syst 29(11):1–21. https://doi.org/10.1002/2050-7038.12100

    Article  Google Scholar 

  38. Rashad A, Kamel S, Jurado F, Rihan M, Ebeed M (2022) Optimal design of SSSC and crowbar parameters for performance enhancement of Egyptian Zafrana wind farm. Electr Eng 104(3):1441–1457. https://doi.org/10.1007/s00202-021-01397-0

    Article  Google Scholar 

  39. Hossain MJ, Pota HR, Mahmud MA, Ramos RA (2012) Investigation of the impacts of large-scale wind power penetration on the angle and voltage stability of power systems. IEEE Syst J 6(1):76–84. https://doi.org/10.1109/JSYST.2011.2162991

    Article  Google Scholar 

  40. Mohammadpour HA, Islam MM, Santi E, Shin YJ (2016) SSR Damping in fixed-speed wind farms using series FACTS controllers. IEEE Trans Power Deliv 31(1):76–86. https://doi.org/10.1109/TPWRD.2015.2464323

    Article  Google Scholar 

  41. Mehta B, Bhatt P, Pandya V (2015) Small signal stability enhancement of DFIG based wind power system using optimized controllers parameters. Int J Electr Power Energy Syst 70:70–82. https://doi.org/10.1016/j.ijepes.2015.01.039

    Article  Google Scholar 

  42. Song Y, Wang X, Blaabjerg F (2017) Impedance-based high-frequency resonance analysis of DFIG system in weak grids. IEEE Trans Power Electron 32(5):3536–3548. https://doi.org/10.1109/TPEL.2016.2584118

    Article  Google Scholar 

  43. Huang H, Chung CY (2012) Coordinated damping control design for DFIG-based wind generation considering power output variation. IEEE Trans Power Syst 27(4):1916–1925. https://doi.org/10.1109/TPWRS.2012.2190110

    Article  Google Scholar 

  44. Prajapat GP, Senroy N, Kar IN (2016) Eigenvalue sensitivity analysis based optimized control of wind energy conversion systems. In; IEEE PES Innov. Smart Grid Technol. Conf. Eur., pp. 647–652. https://doi.org/10.1109/ISGT-Asia.2016.7796461

  45. Morshed MJ, Fekih A (2019) A probabilistic robust coordinated approach to stabilize power oscillations in DFIG-based power systems. IEEE Trans Ind Informatics 15(10):5599–5612. https://doi.org/10.1109/TII.2019.2901935

    Article  Google Scholar 

  46. Ghafouri M, Karaagac U, Mahseredjian J, Karimi H (2019) SSCI damping controller design for series-compensated DFIG-based wind parks considering implementation challenges. IEEE Trans Power Syst 34(4):2644–2653. https://doi.org/10.1109/TPWRS.2019.2891269

    Article  Google Scholar 

  47. Li P, Xiong L, Wang J, Ma M, Khan MW (2019) SSCI mitigation of series-compensated DFIG wind power plants with robust sliding mode controller using feedback linearization. J Power Electron 19(2):569–579. https://doi.org/10.6113/JPE.2019.19.2.569

    Article  Google Scholar 

  48. Li P, Wang J, Xiong L, Ma M (2019) Robust nonlinear controller design for damping of sub-synchronous control interaction in DFIG-based wind farms. IEEE Access 7:16626–16637. https://doi.org/10.1109/ACCESS.2019.2891768

    Article  Google Scholar 

  49. Liu H, Xie X, Li Y, Liu H, Hu Y (2017) Mitigation of SSR by embedding subsynchronous notch filters into DFIG converter controllers. IET Gener Transm Distrib 11(11):2888–2896. https://doi.org/10.1049/iet-gtd.2017.0138

    Article  Google Scholar 

  50. Malhotra U, Gokaraju R (2014) An add-on self-tuning control system for a UPFC application. IEEE Trans Ind Electron 61(5):2378–2388. https://doi.org/10.1109/TIE.2013.2272272

    Article  Google Scholar 

  51. He T, Li S, Wu S, Li K (2021) Small-signal stability analysis for power system frequency regulation with renewable energy participation. Math Probl Eng. https://doi.org/10.1155/2021/5556062

    Article  Google Scholar 

  52. Mishra Y, Mishra S, Li F, Dong ZY, Bansal RC (2009) Small-signal stability analysis of a DFIG-based wind power system under different modes of operation. IEEE Trans Energy Convers 24(4):972–982. https://doi.org/10.1109/TEC.2009.2031498

    Article  Google Scholar 

  53. Zhang X, He W, Hu J (2020) Impact of inertia control of DFIG-based WT on torsional vibration in drivetrain. IEEE Trans Sustain Energy 11(4):2525–2534. https://doi.org/10.1109/TSTE.2020.2964837

    Article  Google Scholar 

  54. Mohammadpour HA, Santi E (2015) Modeling and control of gate-controlled series capacitor interfaced with a DFIG-based wind farm. IEEE Trans Ind Electron 62(2):1022–1033. https://doi.org/10.1109/TIE.2014.2347007

    Article  Google Scholar 

  55. Leon AE (2016) Integration of DFIG-based wind farms into series-compensated transmission systems. IEEE Trans Sustain Energy 7(2):451–460. https://doi.org/10.1109/TSTE.2015.2498312

    Article  Google Scholar 

  56. Huang PH, El Moursi MS, Xiao W, Kirtley JL (2015) Subsynchronous resonance mitigation for series-compensated dfig-based wind farm by using two-degree-of-freedom control strategy. IEEE Trans Power Syst 30(3):1442–1454. https://doi.org/10.1109/TPWRS.2014.2348175

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conceptual idea for the article. AM contributed to the methodology, software, formal analysis and writing-original draft. SKV was involved in the supervision and writing-review and editing. MSJ assisted in the supervision and writing-review and editing. All authors have read and agreed to the final version of the manuscript.

Corresponding author

Correspondence to M. Anju.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

A1. Doubly fed induction generator (DFIG)-based wind farm

Stator resistance \({R}_{s}\) = 0.01 pu; Stator reactance \({X}_{s}\) = 0.10 pu; Rotor resistance \({R}_{r}\) = 0.01 pu. Rotor reactance \({X}_{r}\) = 0.08 pu; Magnetization reactance \({X}_{m}\) = 3 pu; Number of poles = 4; gear box ratio = 1:89; Blade length = 75.0 m; number of blade = 3.

A2. PI controller gain for RSC

Kp−1 = 0.1, KI−1 = 0.05, Kp−2 = 0.75, KI−2 = 0.055, Kp−3 = 0.01, KI−3 = 0.025, Kp−4 = KI−4 = 0.0155.

A3. PI controller gain for GSC

Kp−5 = 0.05, KI−5 = 0.0015, Kp−6 = 0.01, KI−6 = 0.05, Kp−7 = 0.5, KI−7 = 0.75.

A4. Transmission line parameters

Transmission line resistance,\( {R}_{L}\)=0.02pu, reactance, \({X}_{L}\)=0.5pu, capacitive reactance,\({X}_{c}\) at 50% compensation level = 64.8Ω, line length = 154mile.

A5. Relationship between wind speed \({(v}_{w})\), Rotor speed \({(w}_{r})\) and Electromagnetic torque \({(T}_{e})\)

\({v}_{w}\)(m/s)

\({w}_{r}\)(pu)

\({T}_{e}\)(pu)

7

0.76

0.26

8

0.87

0.33

9

0.98

0.42

10

1.09

0.52

11

1.20

0.63

12

1.20

0.79

A6. Optimization using PSO

Parameters (s)

PSO

Range

SSRDC

\({K}_{{\text{SSRDC}}}\)

120.13

0.00–200.00

IBC

\({K}_{f}\)

24.10

0.00–50.00

\({T}_{f}\)

1.35

0.00–2.00

SSSC

\({T}_{m}\)

2.4721

0.00–6.00

\({k}_{p}\)

0.9421

0.00–2.00

\({k}_{i}\)

0.035

0.00–1.06

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anju, M., Shihabudheen, K.V. & Mija, S.J. Enhancing grid stability: a hybrid control strategy for DFIG-based wind turbines to mitigate sub-synchronous oscillations. Electr Eng (2024). https://doi.org/10.1007/s00202-024-02387-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00202-024-02387-8

Keywords

Navigation