Skip to main content

Advertisement

Log in

Intensification of contaminants, hydrology, and pollution of hyporheic zone: the liver of river ecology—a review

  • Review
  • Published:
Environmental Sustainability Aims and scope Submit manuscript

Abstract

The ecological activities within the hyporheic zone (HZ) heavily rely on water flow dynamics. The arrangement of the hyporheic community is influenced significantly by the hydrological fluxes occurring within the zone, particularly driven by the dynamics of watercourse surface flow. While there is an ongoing debate, it is suggested that benthic organisms may utilize the HZ as a sanctuary. The ability of stream organisms to colonize the HZ is influenced by their biological characteristics. Lower oxygen levels and reduced pore space in deeper sediment layers restrict the presence of macroinvertebrates while favoring meiofauna and protists. Limited research has been conducted on the overall role of hyporheos in the assembly of entire ecosystems, with most studies focusing on larger species. The metabolism of the hyporheos facilitates the transformation of pollutants and nutrients within the HZ through the action of biofilms that degrade dissolved substances, including contaminants. Lastly, the community that feeds on biofilms and participates in hyporheic exchange flow indirectly contributes to these processes. The aim of this review article is to highlight the critical role of water flow dynamics in the hyporheic zone and its influence on the arrangement of the ecological community within. It emphasizes the potential sanctuary function of the hyporheic zone for benthic organisms, shaped by their biological characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed F, Srinivasa Rao K (2015) Prioritization of sub-watersheds based on morphometric analysis using remote sensing and geographic information system techniques. Int J Remote Sens GIS 4(2):51–65

    Google Scholar 

  • Akhtar N, Syakir MI, Ahmad MI, Anees MT, Bin Abu Bakar AF, Mizan SA, Alsaadi SF, Khan MMA, Yusuff MSM (2022) Upscaling of surface water and groundwater interactions in hyporheic zone from local to regional scale. Water 14(4):647

    Article  Google Scholar 

  • Albergamo V, Schollée JE, Schymanski EL, Helmus R, Timmer H, Hollender J, De Voogt P (2019) Nontarget screening reveals time trends of polar micropollutants in a riverbank filtration system. Environ Sci Technol 53(13):7584–7594

    Article  CAS  Google Scholar 

  • Arnon S, Marx LP, Searcy KE, Packman AI (2010) Effects of overlying velocity, particle size, and biofilm growth on stream–subsurface exchange of particles. Hydrol Process: Int J 24(1):108–114

    Google Scholar 

  • Arora NK, Mishra I (2022) Sustainable development goal 6: global water security. Environ Sustain 5:271–275. https://doi.org/10.1007/s42398-022-00246-5

    Article  Google Scholar 

  • Baker RG (2000) Holocene environments reconstructed from plant macrofossils in stream deposits from southeastern Nebraska, USA. Holocene 10(3):357–365

    Article  Google Scholar 

  • Banks VJ, Palumbo-Roe B, Russell CE (2019) The hyporheic zone. Hydrology-the science of water. IntechOpen, London

    Google Scholar 

  • Baranov V, Jourdan J, Pilotto F, Wagner R, Haase P (2020) Complex and nonlinear climate-driven changes in freshwater insect communities over 42 years. Conserv Biol 34(5):1241–1251

    Article  Google Scholar 

  • Bardini L, Boano F, Cardenas MB, Revelli R, Ridolfi L (2012) Nutrient cycling in bedform induced hyporheic zones. Geochim Cosmochim Acta 84:47–61

    Article  CAS  Google Scholar 

  • Battin TJ, Kaplan LA, Newbold D, Hansen CME (2003) Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature 426(6965):439–442

    Article  CAS  Google Scholar 

  • Bencala KE, Gooseff MN, Kimball BA (2011) Rethinking hyporheic flow and transient storage to advance understanding of stream-catchment connections. Water Resour Res. https://doi.org/10.1029/2010WR010066

    Article  Google Scholar 

  • Biehler A, Chaillou G, Buffin-Bélanger T, Baudron P (2020) Hydrological connectivity in the aquifer–river continuum: impact of river stages on the geochemistry of groundwater floodplains. J Hydrol 590:125379

    Article  CAS  Google Scholar 

  • Boano F, Packman AI, Cortis A, Revelli R, Ridolfi L (2007) A continuous time random walk approach to the stream transport of solutes. Water Resour Res 43:W10425. https://doi.org/10.1029/2007WR006062

  • Boano F, Revelli R, Ridolfi L (2009) Quantifying the impact of groundwater discharge on the surface–subsurface exchange. Hydrol Process: Int J 23(15):2108–2116

    Article  CAS  Google Scholar 

  • Boulton AJ (2000) River ecosystem health down under: assessing ecological condition in riverine groundwater zones in Australia. Ecosyst Health 6(2):108–118

    Article  Google Scholar 

  • Boulton AJ (2007) Hyporheic rehabilitation in rivers: restoring vertical connectivity. Freshw Biol 52(4):632–650

    Article  Google Scholar 

  • Boulton AJ, Findlay S, Marmonier P, Stanley EH, Valett HM (1998) The functional significance of the hyporheic zone in streams and rivers. Ann Rev Ecol Syst 29(1):59–81

  • Boulton AJ, Datry T, Kasahara T, Mutz M, Stanford JA (2010) Ecology and management of the hyporheic zone: stream–groundwater interactions of running waters and their floodplains. J North Am Benthol Soc 29(1):26–40

    Article  Google Scholar 

  • Bruno MC, Maiolini B, Carolli M, Silveri L (2009) Impact of hydropeaking on hyporheic invertebrates in an Alpine stream (Trentino, Italy). Ann De Limnol Int J Limnol 45(3):157–170

    Article  Google Scholar 

  • Bruno MC, Doretto A, Boano F, Ridolfi L, Fenoglio S (2020) Role of the hyporheic zone in increasing the resilience of mountain streams facing intermittency. Water 12(7):2034

    Article  Google Scholar 

  • Buffington JM, Tonina D (2009) Hyporheic exchange in mountain rivers II: Effects of channel morphology on mechanics, scales, and rates of exchange. Geogr Compass 3(3):1038–1062

    Article  Google Scholar 

  • Cardenas MB (2008) Surface water-groundwater interface geomorphology leads to scaling of residence times. Geophys Res Lett. https://doi.org/10.1029/2008GL033753

    Article  Google Scholar 

  • Cardenas E, Tiedje JM (2008) New tools for discovering and characterizing microbial diversity. Curr Opin Biotechnol 19(6):544–549

    Article  CAS  Google Scholar 

  • Cardenas MB, Wilson JL, Zlotnik VA (2004) Impact of heterogeneity, bed forms, and stream curvature on subchannel hyporheic exchange. Water Resour Res. https://doi.org/10.1029/2004WR003008

    Article  Google Scholar 

  • Collier KJ, Wright-Stow AE, Smith BJ (2004) Trophic basis of production for a mayfly in a North Island, New Zealand, forest stream: contributions of benthic versus hyporheic habitats and implications for restoration. N Z J Mar Freshw Res 38(2):301–314

    Article  Google Scholar 

  • Conant B Jr (2004) Delineating and quantifying ground water discharge zones using streambed temperatures. Groundwater 42(2):243–257

    Article  CAS  Google Scholar 

  • Cooper WT, Chanton JC, D’Andrilli J, Hodgkins SB, Podgorski DC, Stenson AC, Tfaily MM, Wilson RM (2022) A history of molecular level analysis of natural organic matter by FTICR mass spectrometry and the paradigm shift in organic geochemistry. Mass Spectrom Rev 41(2):215–239

    Article  CAS  Google Scholar 

  • Costanzo SD, Murby J, Bates J (2005) Ecosystem response to antibiotics entering the aquatic environment. Mar Pollut Bull 51(1–4):218–223

    Article  CAS  Google Scholar 

  • Davy-Bowker J, Sweeting W, Wright N, Clarke RT, Arnott S (2006) The distribution of benthic and hyporheic macroinvertebrates from the heads and tails of riffles. Hydrobiologia 563(1):109–123

    Article  Google Scholar 

  • DelVecchia AG, Shanafield M, Zimmer MA, Busch MH, Krabbenhoft CA, Stubbington R, Kaiser KE, Burrows RM, Hosen J, Datry T (2022) Reconceptualizing the hyporheic zone for nonperennial rivers and streams. Freshw Sci 41(2):167–182

    Article  Google Scholar 

  • Descloux S, Datry T, Usseglio-Polatera P (2014) Trait-based structure of invertebrates along a gradient of sediment colmation: Benthos versus hyporheos responses. Sci Total Environ 466:265–276

    Article  Google Scholar 

  • Di Lorenzo T, Fiasca B, Di Cicco M, Cifoni M, Galassi DMP (2021) Taxonomic and functional trait variation along a gradient of ammonium contamination in the hyporheic zone of a Mediterranean stream. Ecol Ind 132:108268

    Article  Google Scholar 

  • Dichgans F, Boos JP, Ahmadi P, Frei S, Fleckenstein JH (2023) Integrated numerical modeling to quantify transport and fate of microplastics in the hyporheic zone. Water Res 243:120349

    Article  CAS  Google Scholar 

  • Dole-Olivier M-J, Des Châtelliers MC, Galassi DMP, Lafont M, Mermillod-Blondin F, Paran F, Graillot D, Gaur S, Marmonier P (2022) Drivers of functional diversity in the hyporheic zone of a large river. Sci Total Environ 843:156985

    Article  CAS  Google Scholar 

  • Dudley-Southern M, Binley A (2015) Temporal responses of groundwater‐surface water exchange to successive storm events. Water Resour Res 51(2):1112–1126

    Article  Google Scholar 

  • Dwivedi D (2019) Geochemical exports to river from the intrameander hyporheic zone under transient hydrologic conditions. Water Resour Res. https://doi.org/10.1029/2018WR023377

    Article  Google Scholar 

  • Fang Y, Chen X, Gomez Velez J, Zhang X, Duan Z, Hammond GE, Goldman AE, Garayburu-Caruso VA, Graham EB (2020) A multirate mass transfer model to represent the interaction of multicomponent biogeochemical processes between surface water and hyporheic zones (SWAT-MRMT-R 1.0). Geosci Model Dev 13(8):3553–3569

    Article  CAS  Google Scholar 

  • Feng R, Duan L, Shen S, Cheng Y, Wang Y, Wang W, Yang S (2023) Temporal dynamic of antibiotic resistance genes in the Zaohe-Weihe hyporheic zone: driven by oxygen and bacterial community. Ecotoxicology 32(1):57–72

    Article  CAS  Google Scholar 

  • Franken RJ, Storey RG, Dudley Williams D (2001) Biological, chemical and physical characteristics of downwelling and upwelling zones in the hyporheic zone of a north-temperate stream. Hydrobiologia 444:183–195

  • Frei S, Piehl S, Gilfedder BS, Löder MGJ, Krutzke J, Wilhelm L, Laforsch C (2019) Occurrence of microplastics in the hyporheic zone of rivers. Sci Rep 9(1):15256

    Article  CAS  Google Scholar 

  • Fritz BG, Mackley RD, Arntzen EV, Mendoza DP, Patton GW (2008) Methods for assessing the relative amounts of groundwater discharge into the Columbia river and measurement of Columbia river gradients at the Hanford Site’s 300 area. Pacific Northwest National Lab (PNNL). Richland, WA (United States)

  • Fudyma JD, Chu RK, Grachet G, Stegen N, Tfaily MM (2021) Coupled biotic–abiotic processes control biogeochemical cycling of dissolved organic matter in the Columbia river hyporheic zone. Front Water 2:574692

    Article  Google Scholar 

  • Gan C, Luo Z, Su C, Tong L, Liu H (2023) Mechanism of reactive co-transport of Fe2+ and antibiotics in hyporheic zone simulated by quartz sand column. J Hydrol 621:129641

    Article  CAS  Google Scholar 

  • Gantzer CJ, Rittmann BE, Herricks EE (1988) Mass transport to streambed biofilms. Water Res 22(6):709–722

    Article  CAS  Google Scholar 

  • Garcia-Becerra FY, Ortiz I (2018) Biodegradation of emerging organic micropollutants in nonconventional biological wastewater treatment: a critical review. Environ Eng Sci 35(10):1012–1036

    Article  CAS  Google Scholar 

  • Gasith A, Resh VH (1999) Streams in Mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Annu Rev Ecol Syst 30:51–81

    Article  Google Scholar 

  • Gomes PIA, Wai OWH (2019) Ecohydrologic structure and function of stream networks with earthen upstream and concrete-lined downstream. Ecohydrology 12(4):e2088

    Article  Google Scholar 

  • Gomez-Velez JD, Harvey JW (2014) A hydrogeomorphic river network model predicts where and why hyporheic exchange is important in large basins. Geophys Res Lett 41(18):6403–6412

    Article  Google Scholar 

  • Gomez-Velez JD, Wilson JL, Cardenas MB, Harvey JW (2017) Flow and residence times of dynamic river bank storage and sinuosity‐driven hyporheic exchange. Water Resour Res 53(10):8572–8595

    Article  Google Scholar 

  • Graham ZA, Stubbs MB, Loughman ZJ (2022) Digging ability and digging performance in a hyporheic gravel-dwelling crayfish, the hairy crayfish Cambarus friaufi (Hobbs 1953)(Decapoda Astacidae: Cambaridae). J Crustacean Biol 42(1):ruac002

  • Guo F, Jiang G (2020) Hydro-ecological processes of hyporheic zone in a karst spring-fed pool: Effects of groundwater decline and river backflow. J Hydrol 587:124987

    Article  CAS  Google Scholar 

  • Hannah DM, Malcolm IA, Bradley C (2009) Seasonal hyporheic temperature dynamics over riffle bedforms. Hydrol Processes: Int J 23(15):2178–2194

    Article  Google Scholar 

  • Harvey J, Gooseff M (2015) River corridor science: hydrologic exchange and ecological consequences from bedforms to basins. Water Resour Res 51(9):6893–6922

    Article  Google Scholar 

  • Hirsch R, Ternes T, Haberer K, Kratz K-L (1999) Occurrence of antibiotics in the aquatic environment. Sci Total Environ 225(1–2):109–118

    Article  CAS  Google Scholar 

  • Höhne A, Müller BM, Schulz H, Dara R, Posselt M, Lewandowski J, McCallum JL (2022) Fate of trace organic compounds in the hyporheic zone: influence of microbial metabolism. Water Res 224:119056

    Article  Google Scholar 

  • Hölker F, Wurzbacher C, Weißenborn C, Monaghan MT, Holzhauer SIJ, Premke K (2015) Microbial diversity and community respiration in freshwater sediments influenced by artificial light at night. Philos Trans Royal Soc B: Biol Sci 370(1667):20140130

    Article  Google Scholar 

  • Huang S, Yang JQ (2022) Impacts of emergent vegetation on hyporheic exchange. Geophys Res Lett 49(13):e2022GL099095

    Article  Google Scholar 

  • Hübner D, Gerke M, Fricke R, Schneider J, Winkelmann C (2020) Cypriniform fish in running waters reduce hyporheic oxygen depletion in a eutrophic river. Freshw Biol 65(9):1518–1528

    Article  Google Scholar 

  • Iepure S, Gomez-Ortiz D, Lillo J, Rasines-Ladero R, Di Lorenzo T (2022) Applying electrical resistivity tomography and biological methods to assess the hyporheic zone water exchanges in two Mediterranean stream reaches. Water 14(21):3396

    Article  CAS  Google Scholar 

  • Kaiser KE (2022) Reconceptualizing the hyporheic zone for nonperennial rivers and streams. Freshw Sci

  • Kalekar P, Kamble P, Chakraborti S et al (2022) Heavy metal contamination in surface sediments of the Upper Bhima Basin, Maharashtra, India. Environ Sustain 5:507–531

    Article  CAS  Google Scholar 

  • Kasahara T, Li Y, Tanaka A (2022) Effects of dams and reservoirs on organic matter decomposition in the hyporheic zone in forest mountain streams. Hydrobiologia 849(13):2949–2965

    Article  CAS  Google Scholar 

  • Krause S, Heathwaite L, Binley A, Keenan P (2009) Nitrate concentration changes at the groundwater-surface water interface of a small Cumbrian river. Hydrol Processes: Int J 23(15):2195–2211

    Article  CAS  Google Scholar 

  • Krause S, Lewandowski J, Grimm NB, Hannah DM, Pinay G, McDonald K, Martí E, Argerich A, Pfister L, Klaus J (2017) Ecohydrological interfaces as hot spots of ecosystem processes. Water Resour Res 53(8):6359–6376

    Article  Google Scholar 

  • Krause S, Abbott BW, Baranov V, Bernal S, Blaen P, Datry T, Drummond J, Fleckenstein JH, Velez JG, Hannah DM, Knapp JL (2022) Organizational principles of hyporheic exchange flow and biogeochemical cycling in river networks across scales. Water Res Res 58(3):e2021WR029771

  • Langenhoff A, Inderfurth N, Veuskens T, Schraa G, Blokland M, Kujawa-Roeleveld K, Rijnaarts H (2013) Microbial removal of the pharmaceutical compounds ibuprofen and diclofenac from wastewater. BioMed Res Int 2013:325806. https://doi.org/10.1155/2013/325806

  • Lapham L, Buser-Young J, Thurber A, Colwell F (2021) River and hyporheic zone water geochemical data from OsmoSamplers, East River Pumphouse, Colorado, Nov 2017-Sept 2018. Environmental system science data infrastructure for a virtual ecosystem (ESS-DIVE) (United States); Quantifying subsurface biogeochemical variability in a high altitude watershed during winter isolation

  • Lewandowski J, Nützmann G (2010) Nutrient retention and release in a floodplain’s aquifer and in the hyporheic zone of a lowland river. Ecol Eng 36(9):1156–1166

    Article  Google Scholar 

  • Li Z, Sobek A, Radke M (2015) Flume experiments to investigate the environmental fate of pharmaceuticals and their transformation products in streams. Environ Sci Technol 49(10):6009–6017

    Article  CAS  Google Scholar 

  • Li S-L, Xu S, Wang T-J, Yue F-J, Peng T, Zhong J, Wang L-C, Chen J-A, Wang S-J, Chen X (2020) Effects of agricultural activities coupled with karst structures on riverine biogeochemical cycles and environmental quality in the karst region. Agric Ecosyst Environ 303:107120

    Article  CAS  Google Scholar 

  • Li S, Li B, Liu H, Qi W, Yang Y, Yu G, Qu J (2022) The biogeochemical responses of hyporheic groundwater to the long-run managed aquifer recharge: Linking microbial communities to hydrochemistry and micropollutants. J Hazard Mater 431:128587

  • Liang D, Song J, Xia J, Chang J, Kong F, Sun H, Cheng D, Zhang Y (2022) Effects of heavy metals and hyporheic exchange on microbial community structure and functions in hyporheic zone. J Environ Manage 303:114201

    Article  CAS  Google Scholar 

  • Luo Y, Zhang Z, Chhowalla M, Liu B (2022) Recent advances in design of electrocatalysts for high‐current‐density water splitting. Adv Mater 34(16):2108133

  • Maazouzi C, Galassi D, Claret C, Cellot B, Fiers F, Martin D, Marmonier P, Dole-Olivier M (2017) Do benthic invertebrates use hyporheic refuges during streambed drying? A manipulative field experiment in nested hyporheic flowpaths. Ecohydrology 10(6):e1865

    Article  Google Scholar 

  • Maier HS, Howard KWF (2011) Influence of oscillating flow on hyporheic zone development. Groundwater 49(6):830–844

    Article  CAS  Google Scholar 

  • Malzone JM, Anseeuw SK, Lowry CS, Allen-King R (2016) Temporal hyporheic zone response to water table fluctuations. Groundwater 54(2):274–285

    Article  CAS  Google Scholar 

  • Marchant R, Wells F, Newall P (2000) Assessment of an ecoregion approach for classifying macroinvertebrate assemblages from streams in Victoria, Australia. J North Am Benthol Soc 19(3):497–500

    Article  Google Scholar 

  • Marciniak M, Ziułkiewicz M, Górecki M (2022) Variability of water exchange in the hyporheic zone of a lowland river in Poland based on gradientometric studies. Quaest Geogr. https://doi.org/10.2478/quageo-2022-0030

    Article  Google Scholar 

  • Maridet L, Philippe M (1995) Influence of substrate characteristics on the vertical distribution of stream macroinvertebrates in the hyporheic zone. Folia Fac Sci Nat Univ Masarykianae Brunensis 91:101–105

    Google Scholar 

  • McCallum JL, Shanafield M (2016) Residence times of stream-groundwater exchanges due to transient stream stage fluctuations. Water Resour Res 52(3):2059–2073

    Article  Google Scholar 

  • Mendoza-Lera C, Ribot M, Foulquier A, Martí E, Bonnineau C, Breil P, Datry T (2019) Exploring the role of hydraulic conductivity on the contribution of the hyporheic zone to in-stream nitrogen uptake. Ecohydrology 12(7):e2139

    Article  CAS  Google Scholar 

  • Mermillod-Blondin F (2011) The functional significance of bioturbation and biodeposition on biogeochemical processes at the water–sediment interface in freshwater and marine ecosystems. J North Amer Benthol Soc 30(3):770–778

  • Mermillod-Blondin F, Foulquier A, Maazouzi C, Navel S, Negrutiu Y, Vienney A, Simon L, Marmonier P (2013) Ecological assessment of groundwater trophic status by using artificial substrates to monitor biofilm growth and activity. Ecol Ind 25:230–238

    Article  CAS  Google Scholar 

  • Michaelis T, Wunderlich A, Coskun ÖK, Orsi W, Baumann T, Einsiedl F (2022) High-resolution vertical biogeochemical profiles in the hyporheic zone reveal insights into microbial methane cycling. Biogeosciences 19(18):4551–4569

    Article  CAS  Google Scholar 

  • Milner VS, Jones JI, Maddock IP, Bunting GC (2022) The hyporheic zone as an invertebrate refuge during a fine sediment disturbance event. Ecohydrology 15(6):e2450

    Article  Google Scholar 

  • Nelson AR, Sawyer AH, Gabor RS, Saup CM, Bryant SR, Harris KD, Briggs MA, Williams KH, Wilkins MJ (2019) Heterogeneity in hyporheic flow, pore water chemistry, and microbial community composition in an alpine streambed. J Geophys Rese: Biogeosci 124(11):3465–3478

    Article  Google Scholar 

  • Nogaro G, Mermillod-Blondin F, Valett MH, François-Carcaillet F, Gaudet J-P, Lafont M, Gibert J (2009) Ecosystem engineering at the sediment–water interface: bioturbation and consumer-substrate interaction. Oecologia 161(1):125–138

    Article  Google Scholar 

  • Olsen DA, Townsend CR (2003) Hyporheic community composition in a gravel-bed stream: influence of vertical hydrological exchange, sediment structure and physicochemistry. Freshw Biol 48(8):1363–1378

    Article  Google Scholar 

  • Pacioglu O, Robertson A (2017) The invertebrate community of the chalk stream hyporheic zone: spatio-temporal distribution patterns. Knowl Manage Aquat Ecosyst 418:10

    Article  Google Scholar 

  • Packman AI, Salehin M, Zaramella M (2004) Hyporheic exchange with gravel beds: Basic hydrodynamic interactions and bedform-induced advective flows. J Hydraul Eng 130(7):647–656

    Article  Google Scholar 

  • Peralta-Maraver I, Reiss J, Robertson AL (2018) Interplay of hydrology, community ecology and pollutant attenuation in the hyporheic zone. Sci Total Environ 610:267–275

    Article  Google Scholar 

  • Peter KT, Herzog S, Tian Z, Wu C, McCray JE, Lynch K, Kolodziej EP (2019) Evaluating emerging organic contaminant removal in an engineered hyporheic zone using high resolution mass spectrometry. Water Res 150:140–152

    Article  CAS  Google Scholar 

  • Poole GC, O’daniel SJ, Jones KL, Woessner WW, Bernhardt ES, Helton AM, Stanford JA, Boer BR, Beechie TJ (2008) Hydrologic spiralling: the role of multiple interactive flow paths in stream ecosystems. River Res Appl 24(7):1018–1031

    Article  Google Scholar 

  • Poole GC, Fogg SK, O’Daniel SJ, Amerson BE, Reinhold AM, Carlson SP, Mohr EJ, Oakland HC (2022) Hyporheic hydraulic geometry: conceptualizing relationships among hyporheic exchange, storage, and water age. PLoS ONE 17(1):e0262080

    Article  CAS  Google Scholar 

  • Posselt M, Jaeger A, Schaper JL, Radke M, Benskin JP (2018) Determination of polar organic micropollutants in surface and pore water by high-resolution sampling-direct injection-ultra high performance liquid chromatography-tandem mass spectrometry. Environ Sci: Process Impacts 20(12):1716–1727

    CAS  Google Scholar 

  • Radke M, Lauwigi C, Heinkele G, Mürdter TE, Letzel M (2009) Fate of the antibiotic sulfamethoxazole and its two major human metabolites in a water sediment test. Environ Sci Technol 43(9):3135–3141

    Article  CAS  Google Scholar 

  • Reidy CA, Clinton SM (2004) Down under: hyporheic zones and their function. University of Washington Water Center

  • Ren J, Hu H, Lu X, Yu R (2023) Water and heat exchange responses to flooding and local storm events in the hyporheic zone driven by a meandering bend. Sci Total Environ 883:163732

    Article  CAS  Google Scholar 

  • Reynolds SK Jr, Benke AC (2012) Chironomid production along a hyporheic gradient in contrasting stream types. Freshw Sci 31(1):167–181

    Article  Google Scholar 

  • Robertson AL, Wood PJ (2010) Ecology of the hyporheic zone: origins, current knowledge and future directions. Fundam Appl Limnol 176(4):279–289

    Article  Google Scholar 

  • Roose-Amsaleg C, Laverman AM (2016) Do antibiotics have environmental side-effects? Impact of synthetic antibiotics on biogeochemical processes. Environ Sci Pollut Res 23(5):4000–4012

    Article  CAS  Google Scholar 

  • Runkel RL (2007) Toward a transport-based analysis of nutrient spiraling and uptake in streams. Limnol Oceanogr: Methods 5(1):50–62

    Article  Google Scholar 

  • Rutere C, Posselt M, Horn MA (2020) Fate of trace organic compounds in hyporheic zone sediments of contrasting organic carbon content and impact on the microbiome. Water 12(12):3518

    Article  CAS  Google Scholar 

  • Sackett JD, Shope CL, Bruckner JC, Wallace J, Cooper CA, Moser DP (2019) Microbial community structure and metabolic potential of the hyporheic zone of a large mid-stream channel bar. Geomicrobiol J 36(9):765–776

    Article  Google Scholar 

  • Schaper JL, Seher W, Nützmann G, Putschew A, Jekel M, Lewandowski J (2018) The fate of polar trace organic compounds in the hyporheic zone. Water Res 140:158–166

    Article  CAS  Google Scholar 

  • Schmadel NM, Ward AS, Kurz MJ, Fleckenstein JH, Zarnetske JP, Hannah DM, Blume T, Vieweg M, Blaen PJ, Schmidt C (2016) Stream solute tracer timescales changing with discharge and reach length confound process interpretation. Water Resour Res 52(4):3227–3245

    Article  Google Scholar 

  • Schmid-Araya JM (1994) Spatial and temporal distribution of micro-meiofaunal groups in an alpine gravel stream. Int Ver Theor Angew Limnol: Verh 25(3):1649–1655

    Google Scholar 

  • Schulz R, Sherwood PR (2008) Physical and mental health effects of family caregiving. J Soc Work Educ 44:105–113

    Article  Google Scholar 

  • Singer G, Besemer K, Hödl I, Chlup A, Hochedlinger G, Stadler P, Battin TJ (2006) Microcosm design and evaluation to study stream microbial biofilms. Limnol Oceanogr: Methods 4(11):436–447

    Article  Google Scholar 

  • Singer MB, Stella JC, Dufour S, Piégay H, Wilson RJ, Johnstone L (2013) Contrasting water‐uptake and growth responses to drought in co‐occurring riparian tree species. Ecohydrology 6(3):402–412

  • Singh T, Gomez-Velez JD, Wu L, Wörman A, Hannah DM, Krause S (2020) Effects of successive peak flow events on hyporheic exchange and residence times. Water Resour Res 56(8):e2020WR027113

    Article  Google Scholar 

  • Smock LA, Gladden JE, Riekenberg JL, Smith LC, Black CR (1992) Lotic macroinvertebrate production in three dimensions: channel surface, hyporheic, and floodplain environments. Ecology 73(3):876–886

    Article  Google Scholar 

  • Sobczak WV, Findlay S (2002) Variation in bioavailability of dissolved organic carbon among stream hyporheic flowpaths. Ecology 83(11):3194–3209

    Article  Google Scholar 

  • Son K, Fang Y, GomezVelez JD, Byun K, Chen X (2022) Combined effects of stream hydrology and land use on basin-scale hyporheic zone denitrification in the Columbia River Basin. Water Resour Res. https://doi.org/10.1029/2021WR031131

    Article  Google Scholar 

  • Sophocleous M (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeol J 10(1):52–67

    Article  CAS  Google Scholar 

  • Stanley EH, Boulton AJ (1993) Hydrology and the distribution of hyporheos: perspectives from a mesic river and a desert stream. J North Amer Benthol Soc 12(1):79–83

  • Storey RG, Howard KWF, Williams DD (2003) Factors controlling riffle-scale hyporheic exchange flows and their seasonal changes in a gaining stream: a three‐dimensional groundwater flow model. Water Resour Res 39(2):1034. https://doi.org/10.1029/2002WR001367

  • Strayer DL, Beighley RE, Thompson LC, Brooks S, Nilsson C, Pinay G, Naiman RJ (2003) Effects of land cover on stream ecosystems: roles of empirical models and scaling issues. Ecosystems 6(5):407–423

    Article  Google Scholar 

  • Stubbington R (2012) The hyporheic zone as an invertebrate refuge: a review of variability in space, time, taxa and behaviour. Mar Freshw Res 63(4):293–311

    Article  Google Scholar 

  • Tewari A, Singh PK, Gaur S (2022) Engineered hyporheic zones: design and applications in stream health restoration–a review. Water Supply 22(2):2179–2193

    Article  Google Scholar 

  • Torgeson JM, Rosenfeld CE, Dunshee AJ, Duhn K, Schmitter R, O’Hara PA, Ng GHC, Santelli CM (2022) Hydrobiogechemical interactions in the hyporheic zone of a sulfate-impacted, freshwater stream and riparian wetland ecosystem. Environ Sci: Process Impacts 24(9):1360–1382

    CAS  Google Scholar 

  • Trauth N, Fleckenstein JH (2017) Single discharge events increase reactive efficiency of the hyporheic zone. Water Resour Res 53(1):779–798

    Article  Google Scholar 

  • van Grinsven HJM, Bouwman L, Cassman KG, van Es HM, McCrackin ML, Beusen AHW (2015) Losses of ammonia and nitrate from agriculture and their effect on nitrogen recovery in the European Union and the United States between 1900 and 2050. J Environ Qual 44(2):356–367

    Article  Google Scholar 

  • Vaux WG (1968) Intragravel flow and interchange of water in a streambed. Fish Bull Fish Wildl Service 66(3):479–489

    Google Scholar 

  • Vonk JE, Tank SE, Walvoord MA (2019) Integrating hydrology and biogeochemistry across frozen landscapes. Nat Commun 10(1):5377

    Article  CAS  Google Scholar 

  • Ward AS (2016) The evolution and state of interdisciplinary hyporheic research. Wiley Interdiscip Rev: Water 3(1):83–103

  • Ward AS, Schmadel NM, Wondzell SM (2018) Simulation of dynamic expansion, contraction, and connectivity in a mountain stream network. Adv Water Resour 114:64–82

    Article  Google Scholar 

  • Wohl E (2021) An integrative conceptualization of floodplain storage. Rev Geophys 59(2):e2020RG000724

    Article  Google Scholar 

  • Wright-Stow AE, Wilcock RJ (2017) Responses of stream macroinvertebrate communities and water quality of five dairy farming streams following adoption of mitigation practices. N Z J Mar Freshwat Res 51(1):127–145

    Article  CAS  Google Scholar 

  • Yan A, Guo X, Hu D, Chen X (2022) Reactive transport of NH4+ in the hyporheic zone from the ground water to the surface water. Water 14(8):1237

    Article  CAS  Google Scholar 

  • Yang S, Carlson K (2003) Evolution of antibiotic occurrence in a river through pristine, urban and agricultural landscapes. Water Res 37(19):4645–4656

    Article  CAS  Google Scholar 

  • Yang Y, Liu W, Zhang Z, Grossart H-P, Gadd GM (2020) Microplastics provide new microbial niches in aquatic environments. Appl Microbiol Biotechnol 104(15):6501–6511

    Article  CAS  Google Scholar 

  • Yu K, Duan Y, Liao P, Xie L, Li Q, Ning Z, Liu C (2020) Watershed-scale distributions of heavy metals in the hyporheic zones of a heavily polluted Maozhou River watershed, southern China. Chemosphere 239:124773

    Article  CAS  Google Scholar 

  • Yuan X, Liu T, Fox P, Bhattacharyya A, Dwivedi D, Williams KH, Davis JA, Waite TD, Nico PS (2022) Production of hydrogen peroxide in an intra-meander hyporheic zone at East River, Colorado. Sci Rep 12(1):1–10

    Google Scholar 

  • Zhou T, Endreny TA (2013) Reshaping of the hyporheic zone beneath river restoration structures: Flume and hydrodynamic experiments. Water Resour Res 49(8):5009–5020

    Article  Google Scholar 

  • Zhou Z, Zhou Z (2023) Investigating the hydrodynamic and biogeochemical evolutions of the hyporheic zone due to large-scale reservoir impoundment. J Hydrol 620:129475

    Article  Google Scholar 

  • Zhu A, Yang Z, Liang Z, Gao L, Li R, Hou L, Li S, Xie Z, Wu Y, Chen J, Cao L (2020) Integrating hydrochemical and biological approaches to investigate the surface water and groundwater interactions in the hyporheic zone of the Liuxi River basin, southern China. J Hydrol 583:124622

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vineet Kumar.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Ethical approval

This article does not contain any studies involving animals performed by any of the authors.

Consent for publication

All authors agree to publish this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majeed, L.R., Majeed, L.F., Rashid, S. et al. Intensification of contaminants, hydrology, and pollution of hyporheic zone: the liver of river ecology—a review. Environmental Sustainability (2023). https://doi.org/10.1007/s42398-023-00290-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42398-023-00290-9

Keywords

Navigation