Skip to main content

Advertisement

Log in

Effects of dams and reservoirs on organic matter decomposition in the hyporheic zone in forest mountain streams

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Decomposition of allochthonous organic matter is an essential process in headwater streams. Damming of streams alters decomposition rates in the benthic zone downstream, but little is known about the effects on hyporheic decomposition. We examined the effects of dams on hyporheic and benthic organic matter decomposition, using the cotton-strip assay over five seasons, in two forest mountain streams in western Japan. The decomposition rates in the hyporheic zone were lower downstream of the dams than at the unregulated reach in spring, rainy season and fall, but they did not differ in winter and summer. Hyporheic decomposition rates were comparable to the benthic rates in one river and were lower in the other river. Decomposition rates did not differ between coarse- and fine-mesh bags in many seasons at all sites, and the densities of macroinvertebrates were low, suggesting that the contribution of macroinvertebrate to decomposition in the hyporheic zone was small. These results showed that the hyporheic zone is an important zone for decomposition and that presence of dams altered the hyporheic decomposition in some seasons. Thus, it is crucial to examine both the benthic and hyporheic zones when addressing the effects of dams and reservoirs on stream ecosystem processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets obtained during the present study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  • Arroita, M., I. Aristi, J. Díez, M. Martinez, G. Oyarzun & A. Elosegi, 2015. Impact of water abstraction on storage and breakdown of coarse organic matter in mountain streams. Science of the Total Environment 503–504: 233–240.

    Article  PubMed  CAS  Google Scholar 

  • Boulton, A. J., 2007. Hyporheic rehabilitation in rivers: restoring vertical connectivity. Freshwater Biology 52: 632–650.

    Article  Google Scholar 

  • Boulton, A. J. & J. M. Quinn, 2000. A simple and versatile technique for assessing cellulose decomposition potential in floodplain and riverine sediments. Archiv Fur Hydrobiologie 150: 133–151.

    Article  CAS  Google Scholar 

  • Braatne, J. H., S. M. P. Sullivan & E. Chamberlain, 2007. Leaf decomposition and stream macroinvertebrate colonisation of Japanese knotweed, an invasive plant species. International Review of Hydrobiology 92: 656–665.

    Article  Google Scholar 

  • Burrows, R., H. Rutlidge, N. Bond, S. Eberhard, A. Auhl, M. Andersen, D. Valdez & M. Kennard, 2017. High rates of organic carbon processing in the hyporheic zone of intermittent streams. Scientific Reports 7: 13198.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Casas, J. J., C. Zamora-Muñoz, F. Archila & J. Alba-Tercedor, 2000. The effect of a headwater dam on the use of leaf bags by invertebrate communities. Regulated Rivers-Research & Management 16: 577–591.

    Article  Google Scholar 

  • Cornut, J., A. Elger, D. Lambrigot, P. Marmonier & E. Chauvet, 2010. Early stages of leaf decomposition are mediated by aquatic fungi in the hyporheic zone of woodland streams. Freshwater Biology 55: 2541–2556.

    Article  Google Scholar 

  • Cornut, J., A. Elger, A. Greugny, M. Bonnet & E. Chauvet, 2012. Coarse particulate organic matter in the interstitial zone of three French headwater streams. International Journal of Limnology 48: 303–313.

    Article  Google Scholar 

  • Corson-Rikert, H. A., S. M. Wondzell, R. Haggerty & M. V. Santelmann, 2016. Carbon dynamics in the hyporheic zone of a headwater mountain stream in the Cascade Mountains, Oregon. Water Resources Research 52: 7556–7576.

    Article  CAS  Google Scholar 

  • Danger, M., J. Cornut, L. Elger & E. Chauvet, 2012. Effects of burial on leaf litter quality, microbial conditioning and palatability to three shredder taxa. Freshwater Biology 57: 1017–1030.

    Article  Google Scholar 

  • David, M. B., L. G. Wall, T. V. Royer & J. L. Tank, 2006. Denitrification and the nitrogen budget of a reservoir in an agricultural landscape. Ecological Applications 16: 2177–2190.

    Article  PubMed  Google Scholar 

  • Ferreira, V. & M. A. S. Graça, 2006. Do invertebrate activity and current velocity affect fungal assemblage structure in leaves? International Review of Hydrobiology 91: 1–14.

    Article  CAS  Google Scholar 

  • Ferreira, V. & C. Canhoto, 2014. Effect of experimental and seasonal warming on litter decomposition in a temperate stream. Aquatic Sciences 76: 155–163.

    Article  CAS  Google Scholar 

  • Ferreira, V. & C. Canhoto, 2015. Future increase in temperature may stimulate litter decomposition in temperate mountain streams: evidence from a stream manipulation experiment. Freshwater Biology 60: 881–892.

    Article  Google Scholar 

  • Ferreira, V., V. Gulis & M. A. S. Graça, 2006. Whole-stream nitrate addition affects litter decomposition and associated fungi but not invertebrates. Oecologia 149: 718–729.

    Article  PubMed  Google Scholar 

  • Ferreira, V., B. Castagneyrol, J. Koricheva, V. Gulis, E. Chauvet & M. A. S. Graça, 2015. A meta-analysis of the effects of nutrient enrichment on litter decomposition in streams. Biological Reviews 90: 669–688.

    Article  PubMed  Google Scholar 

  • Flores, L., D. J. Ramón, L. Aitor, C. Pascoal & E. Arturo, 2013. Effects of retention site on breakdown of organic matter in a mountain stream. Freshwater Biology 58: 1267–1278.

    Article  CAS  Google Scholar 

  • Franken, R. J. M., R. G. Storey & D. D. Williams, 2001. Biological, chemical and physical characteristics of downwelling and upwelling zones in the hyporheic zone of a north-temperate stream. Hydrobiologia 44: 183–195.

    Article  Google Scholar 

  • Gessner, M. O. & E. Chauvet, 2002. A case for using litter breakdown to assess functional stream integrity. Ecological Applications 12: 498–510.

    Article  Google Scholar 

  • Gonçalves, J. F., M. A. S. Graça & M. Callisto, 2006. Leaf-litter breakdown in 3 streams in temperate, Mediterranean, and tropical Cerrado climates. Journal of the North American Benthological Society 25: 344–355.

    Article  Google Scholar 

  • González, J. M., S. Mollá, N. Roblas, E. Descals, O. Moya & C. Casado, 2013. Small dams decrease leaf litter breakdown rates in Mediterranean mountain streams. Hydrobiologia 712: 117–128.

    Article  Google Scholar 

  • González-Pinzón, R., R. Haggerty & A. Argerich, 2014. Quantifying spatial differences in metabolism in headwater streams. Freshwater Science 33: 798–811.

    Article  Google Scholar 

  • Graham, E. B., J. C. Stegen, M. Y. Huang, X. Y. Chen & T. D. Scheibe, 2019. Subsurface biogeochemistry is a missing link between ecology and hydrology in dam-impacted river corridors. Science of the Total Environment 657: 435–445.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths, N. A. & S. D. Tiegs, 2016. Organic-matter decomposition along a temperature gradient in a forested headwater stream. Freshwater Science 35: 518–533.

    Article  Google Scholar 

  • Harrison, J. A., R. J. Maranger, R. B. Alexander, A. E. Giblin, P. A. Jacinthe, E. Mayorga, S. P. Seitzinger, D. J. Sobota & W. M. Wollheim, 2009. The regional and global significance of nitrogen removal in lakes and reservoirs. Biogeochemistry 93: 143–157.

    Article  CAS  Google Scholar 

  • Kawai, T. & K. Tanida, 2005. Aquatic insects of Japan: manual with keys and illustrations, Tokai University Press Division, Tokai:

    Google Scholar 

  • Kobayashi, S., 2019. 4.1 Benthic Invertebrates. In Inoue, M. & F. Nakamura (eds), Field and analytical methods in stream ecology Kodansha Scientific Ltd., Tokyo: 232–292.

    Google Scholar 

  • Lessard, J. L. & D. B. Hayes, 2003. Effects of elevated water temperature on fish and macroinvertebrate communities below small dams. River Research and Applications 19: 721–732.

    Article  Google Scholar 

  • Li, Y., T. Kasahara, M. Chiwa & N. Fujimoto, 2020. Effects of dams and reservoirs on organic matter decomposition in forested mountain streams in western Japan. River Research and Applications 36: 1257–1266.

    Article  Google Scholar 

  • Maheu, A., A. St-Hilaire, D. Caissie, N. El-Jabi, G. Bourque & D. Boisclair, 2016. A regional analysis of the impact of dams on water temperature in medium-size rivers in eastern Canada. Canadian Journal of Fisheries and Aquatic Sciences 73: 1885–1897.

    Article  Google Scholar 

  • Martínez, A., A. Larrañaga, A. Basaguren, J. Pérez, C. Mendoza-Lera & J. Pozo, 2013. Stream regulation by small dams affects benthic macroinvertebrate communities: from structural changes to functional implications. Hydrobiologia 711: 31–42.

    Article  Google Scholar 

  • Martínez, A., A. Larrañaga, J. Pérez, C. Casado, J. J. Casas, J. M. González, M. Menéndez, S. Mollá & J. Pozo, 2016. Climate modulates the magnitude of the effects of flow regulation on leaf-litter decomposition. Aquatic Sciences 79: 507–514.

    Article  Google Scholar 

  • Mbaka, J. G. & R. B. Schafer, 2015. Effect of Small Impoundments on Leaf Litter Decomposition in Streams. River Research and Applications 32: 907–913.

    Article  Google Scholar 

  • Mendoza-Lera, C., A. Larrañaga, J. Pérez, E. Descals, A. Martínez, O. Moya, I. Arostegui & J. Pozo, 2012. Headwater reservoirs weaken terrestrial-aquatic linkage by slowing leaf-litter processing in downstream regulated reaches. River Research and Applications 28: 13–22.

    Article  Google Scholar 

  • Menéndez, M., O. Hernandez & F. A. Comin, 2003. Seasonal comparisons of leaf processing rates in two Mediterranean rivers with different nutrient availability. Hydrobiologia 495: 159–169.

    Article  Google Scholar 

  • Menéndez, M., E. Descals, T. Riera & O. Moya, 2012. Effect of small reservoirs on leaf litter decomposition in Mediterranean headwater streams. Hydrobiologia 691: 135–146.

    Article  Google Scholar 

  • Merritt, R. W., K. W. Cummins & M. B. Berg, 2008. An Introduction to the Aquatic Insects of North America, 4th ed. Kendall/Hunt publishing company, United States of America:

    Google Scholar 

  • Metzler, G. M. & L. A. Smock, 1990. Storage and dynamics of subsurface detritus in a sand-bottomed stream. Canadian Journal of Fisheries and Aquatic Sciences 47: 588–594.

    Article  Google Scholar 

  • Meyer, J. L., C. Hax, J. B. Wallace, S. L. Eggert & J. R. Webster, 2000. Terrestrial litter inputs as determinants of food quality of organic matter in a forest stream. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie 27: 1346–1350.

    Google Scholar 

  • Mizuno, T. & E. Takahashi, 1991. An illustrated guide to freshwater zooplankton in Japan, Tokai University Press, Tokai:

    Google Scholar 

  • Mollá, S., J. J. Casas, M. Menéndez, A. Basaguren, C. Casado, E. Descals, J. M. González, A. Larrañaga, M. Lusi, A. Martínez, C. Mendoza-Lera, O. Moya, J. Pérez, T. Riera, N. Roblas & J. Pozo, 2017. Leaf-litter breakdown as an indicator of the impacts by flow regulation in headwater streams: Responses across climatic regions. Ecological Indicators 73: 11–22.

    Article  Google Scholar 

  • Mora-Gómez, J., A. Elosegi, E. Mas-Martí & A. M. Romaní, 2015. Factors controlling seasonality in leaf-litter breakdown in a Mediterranean stream. Freshwater Science 34: 1245–1258.

    Article  Google Scholar 

  • Mora-Goméz, J., A. Elosegi, S. Duarte, F. Cássio, C. Pascoal & A. M. Romani, 2016. Differences in the sensitivity of fungi and bacteria to season and invertebrates affect leaf litter decomposition in a Mediterranean stream. Fems Microbiology Ecology 92: fiw121.

  • Naegeli, M. W. & U. Uehlinger, 1997. Contribution of the hyporheic zone to ecosystem metabolism in a prealpine gravel-bed river. Journal of the North American Benthological Society 16: 794–804.

    Article  Google Scholar 

  • Navel, S., F. Mermillod-Blondin, B. Montuelle, E. Chauvet, L. Simon, C. Piscart & P. Marmonier, 2009. Interactions between fauna and sediment control the breakdown of plant matter in river sediments. Freshwater Biology 55: 753–766.

    Article  CAS  Google Scholar 

  • Peralta-Maraver, I., D. M. Perkins, M. S. A. Thompson, K. Fussmann, J. Reiss & A. L. Robertson, 2019. Comparing biotic drivers of litter breakdown across stream compartments. Journal of Animal Ecology 88: 1146–1157.

    Article  PubMed  Google Scholar 

  • Piscart, C., S. Navel, C. Maazouzi, B. Montuelle, J. Cornut, F. Mermillod-Blondin & M.C. des Chatelliers, L. Simon & P. Marmonier, 2011. Leaf litter recycling in benthic and hyporheic layers in agricultural streams with different types of land use. Science of the Total Environment 409: 4373–4380.

    Article  CAS  PubMed  Google Scholar 

  • Poff, N. L., J. D. Olden, D. M. Merritt & D. M. Pepin, 2007. Homogenization of regional river dynamics by dams and global biodiversity implications. PNAS 104: 5732–5737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Risse-Buhl, U., C. Mendoza-Lera, H. Norf, J. Pérez, J. Pozo & J. Schlief, 2017. Contrasting habitats but comparable microbial decomposition in the benthic and hyporheic zone. Science of the Total Environment 605–606: 683–691.

    Article  PubMed  CAS  Google Scholar 

  • Salomão, V. P., A. M. Tonin, R. S. Rezende, G. F. M. Leite, E. A. C. C. Alvim, J. M. B. Quintão & J. F. Gonçalves, 2019. Small dam impairs invertebrate and microbial assemblages as well as leaf breakdown: a study case from a tropical savanna stream. Limnologica 77: 125685.

    Article  CAS  Google Scholar 

  • Solagaistua, L., M. Arroita, I. Aristi, A. Larrañaga & A. Elosegi, 2015. Changes in discharge affect more surface than subsurface breakdown of organic matter in a mountain stream. Marine and Freshwater Research 67(12): 1826–1834.

    Article  Google Scholar 

  • Stocker, Z. S. J. & D. D. Williams, 1972. A freezing core method for describing the vertical distribution of sediments in streambed. Limnology and Oceanography 17: 136–138.

    Article  Google Scholar 

  • Storey, R. G., R. R. Fulthorpe & D. D. Williams, 1999. Perspectives and predictions on the microbial ecology of the hyporheic zone. Freshwater Biology 41: 119–130.

    Article  Google Scholar 

  • Takemon, Y., 2005. Life-type concept and functional feeding groups of benthos communities as indicators of lotic ecosystem condition. Japanese Journal of Ecology 55: 189–197.

    Google Scholar 

  • Thorp, J. H. & A. P. Covich, 2010. Ecology and Classification of North American Freshwater Invertebrates, 3rd ed. Academic Press, Burlington:

    Google Scholar 

  • Tiegs, S. D., J. E. Clapcott, N. A. Griffiths & A. J. Boulton, 2013. A standardized cotton-strip assay for measuring organic-matter decomposition in streams. Ecological Indicators 32: 131–139.

    Article  CAS  Google Scholar 

  • Tiemann, J. S., D. P. Gillette, M. L. Wildhaber & D. R. Edds, 2004. Effects of lowhead dams on riffle-dwelling fishes and macroinvertebrates in a midwestern river. Transactions of the American Fisheries Society 133: 705–717.

    Article  Google Scholar 

  • Wohl, E., K. Dwire, N. Sutfin, L. Polvi & R. Bazan, 2012. Mechanisms of carbon storage in mountainous headwater rivers. Nature Communications 3: 1263.

    Article  PubMed  CAS  Google Scholar 

  • Young, R. G., C. D. Matthaei & C. R. Townsend, 2008. Organic matter breakdown and ecosystem metabolism: functional indicators for assessing river ecosystem health. Journal of the North American Benthological Society 27: 605–625.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the Water Resources Environment Center (WEC) in Japan under Grant Agreement No 2015-02 and JSPS KAKENHI 19K12298. We are grateful to Tomoya Kubo and Mizuki Koga for their help with field data collection, and Dr. Noboru Fujimoto for support in tensile strength measurement. We thank Mr. Gyo Yoshinari for his contribution in identifying Hydrachnella, Dr. Nao Yamamoto for identification of Chironomidae, and Dr. Taira Akikazu for identification of other common aquatic insects. We also thank the three anonymous reviewers for their constructive comments, which helped us to much improve the manuscript.

Funding

This work was supported by funding from the Water Resources Environment Center (WEC) in Japan under Grant Agreement No 2015-02 and by JSPS KAKENHI Grant number 19K12298.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by TK and YL. Analysis of hyporheic invertebrates were carried out by AT. The first draft of the manuscript was written by TK and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tamao Kasahara.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

This manuscript has not been submitted to any other journals. This manuscript does not contain any studies with human participants or animals under the Japanese Act.

Additional information

Handling Editor: Verónica Ferreira

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasahara, T., Li, Y. & Tanaka, A. Effects of dams and reservoirs on organic matter decomposition in the hyporheic zone in forest mountain streams. Hydrobiologia 849, 2949–2965 (2022). https://doi.org/10.1007/s10750-022-04905-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04905-w

Keywords

Navigation