Skip to main content
Log in

Design, Synthesis, and Characterization of a Humidity Sensor Application Using Nano-Rod Shaped ZnWO4–TiO2 Porous Composite Electronic Material

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

A comprehensive analysis on the design, synthesis, and characterization of a novel ceramic nano-rod shaped ZnWO4–TiO2 porous composite electronic material has been manifested in this article. The cost-efficient high-temperature solid-state reaction route has been adopted for the synthesis mechanism. The composite’s unique structural and morphological features have been thoroughly investigated using X-ray diffraction (XRD) method, scanning electron microscope (SEM) imaging, and energy dispersive X-Ray (EDAX), revealing a distinct porous microstructure. The key electrical properties including dielectric constant, tangent loss, a.c. conductivity, impedance as well as electrical modulus have been analysed over a wide range of temperatures (35–400 °C) and frequencies (1 kHz–1 MHz). Moreover, the semiconducting properties and conduction process have been elucidated through the analysis of the ac conductivity spectrum, providing valuable insights into its electrical behaviour. The humidity sensing characteristics of the synthesized component have also been investigated at 25 °C at a frequency range of 100 Hz–1 MHz for a relative humidity range of 33–75%. The promising results highlight the immense potentiality of the ZnWO4–TiO2 porous composite as an advanced electronic material for humidity sensor applications in industrial, agricultural, and electronic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Y. Chang, X. Yao, Y. Chen, L. Huang, D. Zou, Review on ceramic-based composite phase change materials: preparation, characterization and application. Compos. Part B Eng. 254, 110584 (2023). https://doi.org/10.1016/j.compositesb.2023.110584

    Article  CAS  Google Scholar 

  2. S.N. Das, Relaxor (Pb0.7Bi0.3)(Mg0.231Nb0.462Fe0.3)O3 electronic compound for magnetoelectric field sensor applications. J. Appl. Phys. 128, 14101 (2020). https://doi.org/10.1063/5.0014110

    Article  CAS  Google Scholar 

  3. T.A. Otitoju et al., Advanced ceramic components: materials, fabrication, and applications. J. Ind. Eng. Chem. 85, 34–65 (2020). https://doi.org/10.1016/j.jiec.2020.02.002

    Article  CAS  Google Scholar 

  4. N.S. Kumar, K.C.B. Naidu, A review on perovskite solar cells (PSCs), materials and applications. J. Materiomics 7, 940–956 (2021). https://doi.org/10.1016/j.jmat.2021.04.002

    Article  Google Scholar 

  5. L. Cao, X. Liu, Y. Li et al., Recent progress in all-inorganic metal halide nanostructured perovskites: materials design, optical properties, and application. Front. Phys. 16, 33201 (2021). https://doi.org/10.1007/s11467-020-1026-9

    Article  Google Scholar 

  6. T.A. Blank, L.P. Eksperiandova, K.N. Belikov, Recent trends of ceramic humidity sensors development: a review. Sens. Actuators B Chem. 228, 416–442 (2016). https://doi.org/10.1016/j.snb.2016.01.015

    Article  CAS  Google Scholar 

  7. P. Raji, H.S. Binitha, K.B. Kumar, Synthesis and humidity sensing properties of sn-doped nano. J. Nanotechnol. (2011). https://doi.org/10.1155/2011/569036

    Article  Google Scholar 

  8. H. Farahani, R. Wagiran, M.N. Hamidon, Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors 14, 7881–7939 (2014). https://doi.org/10.3390/s140507881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. P.R. Bueno, J.A. Varela, Electronic ceramics based on polycrystalline SnO2, TiO2 and (SnxTi1-x)O2 solid solution. Mater. Res. 9, 293–300 (2006). https://doi.org/10.1590/S1516-14392006000300009

    Article  CAS  Google Scholar 

  10. P.C. Kumar et al., A facile one-step microwave-assisted synthesis of bismuth oxytelluride nanosheets for optoelectronic and dielectric application: an experimental & computational approach. J. Alloys Compd. 968, 172166 (2023). https://doi.org/10.1016/j.jallcom.2023.172166

    Article  CAS  Google Scholar 

  11. H. Lensch, J. Doerr, A. Schütze, T. Sauerwald, Selective high temperature humidity sensing using fast impedance spectroscopy on titania sensors. Sens. Actuators B Chem. 321, 128497 (2020). https://doi.org/10.1016/j.snb.2020.128497

    Article  CAS  Google Scholar 

  12. A. Parida, S. Senapati, S. Samal, S. Bisoyi, R. Naik, One-pot hydrothermal synthesis of SnMnS nanosheets for dielectric energy storage applications. ACS Appl. Nano Mater. 6, 11230–11241 (2023). https://doi.org/10.1021/acsanm.3c01260

    Article  CAS  Google Scholar 

  13. P.-G. Jiang et al., Study on hydrogen adsorption on WO3(001) surface by density functional theory calculation. Tungsten 5, 558–569 (2023). https://doi.org/10.1007/s42864-022-00195-w

    Article  Google Scholar 

  14. Y. Shi et al., Construction of WO3/Ti-doped WO3 bi-layer nanopore arrays with superior electrochromic and capacitive performances. Tungsten 1, 236–244 (2019). https://doi.org/10.1007/s42864-019-00024-7

    Article  Google Scholar 

  15. D. Sahoo, S. Senapati, S. Samal, S. Varadharajaperumal, R. Naik, Optical and dielectric characterization of nanoparticle-based Cu2Ni1+xSn1–xS4 nanosphere synthesized by facile solvothermal method. ACS Appl. Eng. Mater. 1, 1001–1012 (2023). https://doi.org/10.1021/acsaenm.2c00269

    Article  CAS  Google Scholar 

  16. S. Das, S. Senapati, G.K. Pradhan, S. Varadharajanperumal, R. Naik, A facile microwave-assisted nanoflower-to-nanosphere morphology tuning of CuSe1–x Te1+x for optoelectronic and dielectric applications. ACS Appl. Nano Mater. 6, 5298–5312 (2023). https://doi.org/10.1021/acsanm.2c05429

    Article  CAS  Google Scholar 

  17. L. You, Y. Cao, Y.F. Sun, P. Sun, T. Zhang, Y. Du, G.Y. Lu, Humidity sensing properties of nanocrystalline ZnWO4 with porous structures. Sens. Actuators B Chem. 161, 799–804 (2012). https://doi.org/10.1016/j.snb.2011.11.035

    Article  CAS  Google Scholar 

  18. M.V. Arularasu, R. Sundaram, Synthesis and characterization of nanocrystalline ZnWO4–ZnO composites and their humidity sensing performance. Sens. Bio-Sens. Res. 11, 20–25 (2016). https://doi.org/10.1016/j.sbsr.2016.08.006

    Article  Google Scholar 

  19. H. Mao, F. Zhang et al., Review on synthesis of porous TiO2-based catalysts for energy conversion systems. Ceram. Int. 17, 25177–25200 (2021). https://doi.org/10.1016/j.ceramint.2021.06.039

    Article  CAS  Google Scholar 

  20. H.F. Zhuang, C.J. Lin, Y.K. Lai, L. Sun, J. Li, Some critical structure factors of titanium oxide nanotube array in its photocatalytic activity. Environ. Sci. Technol. 41, 4735–4740 (2017). https://doi.org/10.1021/es0702723

    Article  CAS  Google Scholar 

  21. I. Cappelli, A. Fort, A.L. Grasso, E. Panzardi, M. Mugnaini, V. Vignoli, RH sensing by means of TiO2 nanoparticles: a comparison among different sensing techniques based on modeling and chemical/physical interpretation. Chemosensors 8, 89 (2020). https://doi.org/10.3390/chemosensors8040089

    Article  CAS  Google Scholar 

  22. H.K. Kim, S.D. Sathaye, Y.K. Hwang, S.H. Jhung, J.S. Hwang, S.H. Kwon, S.E. Park, J.S. Chang, Humidity sensing properties of nanoporous TiO2–SnO2 ceramic sensors. Bull. K. Chem. Soc. 26, 1881–1884 (2005). https://doi.org/10.5012/bkcs.2005.26.11.1881

    Article  CAS  Google Scholar 

  23. P.M. Faia, C.S. Furtado, A.J. Ferreira, Humidity sensing properties of a thick-film titania prepared by a slow spinning process. Sens. Actuators B Chem. 101, 183–190 (2004). https://doi.org/10.1016/j.snb.2004.02.050

    Article  CAS  Google Scholar 

  24. S.N. Das, A. Pattanaik, S. Kadambini, S. Pradhan, S. Bhuyan, R.N.P. Choudhary, Dielectric and impedance spectroscopy of Ni doped BiFeO3–BaTiO3 electronic system. J. Mater. Sci. Mater. Electron. 27, 10099–10105 (2016). https://doi.org/10.1007/s10854-016-5084-2

    Article  CAS  Google Scholar 

  25. L. Sahoo, S. Bhuyan, S.N. Das, Structural, morphological, and impedance spectroscopy of Tin oxide-Titania based electronic material. Phys. B Condens. Matter 654, 414705 (2023). https://doi.org/10.1016/j.physb.2023.414705

    Article  CAS  Google Scholar 

  26. S.N. Mathad, Mechanical and structural properties of Zn0.1Ni0.4Cu0.5Fe2O4 ferrite. Int. J. Adv. Sci. Eng. 5(2), 911–916 (2018). https://doi.org/10.29294/IJASE.5.2.2018.911-916

    Article  Google Scholar 

  27. A.N. Mallika et al., Synthesis and optical characterization of aluminum doped ZnO nanoparticles. Ceram. Int. 40, 12171–12177 (2014). https://doi.org/10.1016/j.ceramint.2014.04.057

    Article  CAS  Google Scholar 

  28. I.G. Shitu et al., X-ray diffraction (XRD) profile analysis and optical properties of Klockmannite copper selenide nanoparticles synthesized via microwave assisted technique. Ceram. Int. 49, 12309–12326 (2023). https://doi.org/10.1016/j.ceramint.2022.12.086

    Article  CAS  Google Scholar 

  29. S. Mustapha et al., Comparative study of crystallite size using Williamson–Hall and Debye–Scherrer plots for ZnO nanoparticles. Adv. Natural Sci. Nanosci. Nanotechnol. 10, 045013 (2019). https://doi.org/10.1088/2043-6254/ab52f7

    Article  Google Scholar 

  30. A. Khorsand Zak et al., X-ray analysis of ZnO nanoparticles by Williamsone–Hall and size–strain plot methods. Solid State Sci. 13, 251–256 (2011). https://doi.org/10.1016/j.solidstatesciences.2010.11.024

    Article  CAS  Google Scholar 

  31. J.C. Mikkelsen, Pseudobinary phase relations of Li2Ti3O7. J. Am. Ceram. Soc. 63, 331–335 (1980). https://doi.org/10.1111/j.1151-2916.1980.tb10732.x

    Article  CAS  Google Scholar 

  32. Y.H. Park, K.M. Min, S. Cho, M.Y. Ahn, Y.M. Lee, Li2TiO3 powder synthesis by solid-state reaction and pebble fabrication for tritium breeding material. Fusion Eng. Design 124, 730–734 (2017). https://doi.org/10.1016/j.fusengdes.2017.05.015

    Article  CAS  Google Scholar 

  33. S. Halder, K. Parida et al., Dielectric and impedance properties of Bi(Zn2/3V1/3)O3 electronic material. Phys. Lett. A 382, 716–722 (2018). https://doi.org/10.1016/j.physleta.2017.12.048

    Article  CAS  Google Scholar 

  34. S. Kalingani, S.N. Das, S. Bhuyan, Structural, micro-structural, morphological, electrical spectroscopy and optical analysis of lithium–titanium oxide electronic material. Inorg. Chem. Commun.. Chem. Commun. 159, 111731 (2024). https://doi.org/10.1016/j.inoche.2023.111731

    Article  CAS  Google Scholar 

  35. K.K. Mishra et al., Vibrational, magnetic, and dielectric behavior of La-substituted BiFeO3-PbTiO3. J. Appl. Phys. 110, 123529 (2011). https://doi.org/10.1063/1.3673240

    Article  CAS  Google Scholar 

  36. J. Cheng, S.W. Yu, J. Chen, Z. Meng, L.E. Cross, Dielectric and magnetic enhancements in BiFeO3–PbTiO3 solid solutions with La doping. Appl. Phys. Lett. 89, 122911 (2006). https://doi.org/10.1063/1.2353806

    Article  CAS  Google Scholar 

  37. S.A. Mazen, A.S. Nawara, N.I. Abu-Elsaad, Investigation of dielectric behavior in Ni0.7-xZn0.3MxFe2O4 (M=Mn/Co/Cu) ferrites by impedance spectroscopy. Ceram. Int. 47, 9856–9865 (2021). https://doi.org/10.1016/j.ceramint.2020.12.127

    Article  CAS  Google Scholar 

  38. J. Li et al., Impedance spectroscopy and dielectric properties of BaAl(2–2x)(Zn0.5Ti0.5)2xO4 ceramics. Ceram. Int. 46, 1830–1835 (2020). https://doi.org/10.1016/j.ceramint.2019.09.159

    Article  CAS  Google Scholar 

  39. R. Tang, C. Jiang, W. Qian, J. Jian, X. Zhang, H. Wang, H. Yang, Dielectric relaxation, resonance and scaling behaviors in Sr3Co2Fe24O41 hexaferrite. Sci. Rep. 5, 13645 (2015). https://doi.org/10.1038/srep13645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. A. Rout, S. Agrawal, Investigation of electrical conduction in Ca6-xNa2Y2(SiO4)6F2:xEu3+ ceramic by complex impedance and electric modulus spectroscopy. Ceram. Int. 47, 7032–7044 (2021). https://doi.org/10.1016/j.ceramint.2020.11.053

    Article  CAS  Google Scholar 

  41. A. Srour, Z. Bitar, K. Badreddine, R. Awad, Physical properties and dielectric response of (Gd, Pr)-dual doped samarium iron garnet. Ceram. Int. 49, 21255–21277 (2021). https://doi.org/10.1016/j.ceramint.2023.03.255

    Article  CAS  Google Scholar 

  42. A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673 (1977). https://doi.org/10.1038/267673a0

    Article  CAS  Google Scholar 

  43. A. Tripathy et al., Temperature and frequency dependent dielectric and impedance characteristics of double perovskite Bi2MnCoO6 electronic material. J. Mater. Sci. Mater. Electron. 29, 4770 (2018). https://doi.org/10.1007/s10854-017-8432-y

    Article  CAS  Google Scholar 

  44. D. Patnaik, P.P. Nayak, S. Bhuyan, S.N. Das, Structural, microstructural, and electrical behavior of a relaxor (Mg0.5W0.5)(Pb0.5Ni0.5)O3 electronic material. J. Aust. Ceram. Soc. 59, 1337–1348 (2023). https://doi.org/10.1007/s41779-023-00914-7

    Article  CAS  Google Scholar 

  45. L. Sahoo, S. Bhuyan, S.N. Das, Temperature-frequency dependent electrical properties of tin oxide-titania based capacitive electronic component. Appl. Phys. A 128, 1136 (2022). https://doi.org/10.1007/s00339-022-06264-8

    Article  CAS  Google Scholar 

  46. N. Momin et al., Structural and ionic conductivity of Cu-doped titania (Ti0.95Cu0.05O2−δ) for high temperature energy devices. Ceram. Int. 47, 10284–10290 (2021). https://doi.org/10.1016/j.ceramint.2020.06.277

    Article  CAS  Google Scholar 

  47. A. Tripathy, S.N. Das, S. Bhuyan, R.N.P. Choudhary, Structural, morphological and electrical impedance spectroscopy of Bi2MnCdO6 double perovskite electronic material. Trans. Electr. Electron. Mater. 20, 280 (2019). https://doi.org/10.1007/s42341-019-00108-8

    Article  Google Scholar 

  48. S.N. Das, S.K. Pardhan et al., Dielectric and impedance characteristics of nickel-modified BiFeO3–BaTiO3 electronic compound. J. Electron. Mater. 47, 843 (2018). https://doi.org/10.1007/s11664-017-5848-3

    Article  CAS  Google Scholar 

  49. K. Prasad et al., Electrical conduction in (Na0.5Bi0.5)TiO3 ceramic: impedance spectroscopy analysis. Adv. Appl. Ceram. 106, 241–246 (2007). https://doi.org/10.1179/174367607X202627

    Article  CAS  Google Scholar 

  50. M. De et al., Structural, dielectric and electrical CH aracteristics of BiFeO3-NaNbO3 solid solutions. Ceram. Int. 44, 11792–11797 (2018). https://doi.org/10.1016/j.ceramint.2018.03.263

    Article  CAS  Google Scholar 

  51. P.A. Prashanth, R.S. Raveendra, R.H. Krishna, H. Ananda, H.R. Naika, Synthesis, characterizations, antibacterial and photoluminescence studies of solution combustion-derived α-Al2O3 nanoparticles. J. Asian Ceram. Soc. 3, 345–351 (2015). https://doi.org/10.1016/j.jascer.2015.07.001

    Article  Google Scholar 

  52. B. Kaur, L. Singh, T. Garg, D. Jeong, N. Dabra, J.S. Hundal, A comparative investigation of structural and optical properties of annealing modified mullite bismuth ferrite. Ferroelectr. Lett. 46, 52–63 (2019). https://doi.org/10.1080/07315171.2019.1647722

    Article  CAS  Google Scholar 

  53. M.M. Gois et al., Bi25FeO40-Fe3O4-Fe2O3 composites: synthesis, structural characterization, magnetic and UV–visible photocatalytic properties. J. Alloys Compd. 785, 598–602 (2019). https://doi.org/10.1016/j.jallcom.2019.01.168

    Article  CAS  Google Scholar 

  54. Y. Kumar et al., Structural and optical properties of Nd doped LaPO4. J. Alloys Compd. 925, 166772 (2022). https://doi.org/10.1016/j.jallcom.2022.166772

    Article  CAS  Google Scholar 

  55. L.P.B. Reddy, H.G.R. Prakash et al., Structural and humidity sensing properties of niobium pentoxide-mixed nickel ferrite prepared by mechano-chemical mixing method. J. Mater. Sci. Mater. Electron. 31, 21981–21999 (2020). https://doi.org/10.1007/s10854-020-04701-z

    Article  CAS  Google Scholar 

  56. M. Pan et al., Design and verification of humidity sensors basedon magnesium oxide micro-arc oxidation film layers. Sensors 20, 1736 (2020). https://doi.org/10.3390/s20061736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. R. Andika et al., Organic nanostructure sensing layer developed by AAO template for the application in humidity sensors. J. Mater. Sci. Mater. Electron. 30, 2382–2388 (2019). https://doi.org/10.1007/s10854-018-0511-1

    Article  CAS  Google Scholar 

  58. Y. Kim, B. Jung et al., Capacitive humidity sensor design based on anodic aluminum oxide. Sens. Actuators B Chem. 141, 441–446 (2009). https://doi.org/10.1016/j.snb.2009.07.007

    Article  CAS  Google Scholar 

  59. L. You, Y. Cao et al., Humidity sensing properties of nanocrystalline ZnWO4 with porous structures. Sens. Actuators B Chem. 161, 799–804 (2012). https://doi.org/10.1016/j.snb.2011.11.035

    Article  CAS  Google Scholar 

  60. L.P.B. Reddy, H.G.R. Prakash, Y.T. Ravikiran et al., Structural and humidity sensing properties of niobium pentoxide-mixed nickel ferrite prepared by mechano-chemical mixing method. J. Mater. Sci. Mater. Electron. 31, 21981–21999 (2020). https://doi.org/10.1007/s10854-020-04701-z

    Article  CAS  Google Scholar 

  61. P. Pascariu, A. Airinei et al., Microstructure, electrical and humidity sensor properties of electrospun NiO–SnO2 nanofibers. Sens. Actuators B 222, 1024–1031 (2015). https://doi.org/10.1016/j.snb.2015.09.051

    Article  CAS  Google Scholar 

  62. W.D. Lin, R.Y. Hong et al., Enhanced performance of humidity sensor based on Gr/hollow sphere ZrO2 nanocomposites. Sens. Actuators A 330, 112872 (2021). https://doi.org/10.1016/j.sna.2021.112872

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalingani, S., Das, S.N., Bhuyan, S. et al. Design, Synthesis, and Characterization of a Humidity Sensor Application Using Nano-Rod Shaped ZnWO4–TiO2 Porous Composite Electronic Material. Trans. Electr. Electron. Mater. (2024). https://doi.org/10.1007/s42341-024-00544-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42341-024-00544-1

Keywords

Navigation