Skip to main content
Log in

Temperature and frequency dependent dielectric and impedance characteristics of double perovskite Bi2MnCoO6 electronic material

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The temperature and field dependent capacitive as well as conducting characteristics of double perovskite electronic material (Bi2MnCoO6) have been investigated using dielectric and impedance spectroscopy techniques. The electronic material has been formulated by applying a high temperature solid state reaction based ceramic processing route. The formation of the desired sample material is confirmed with a monoclinic crystal system using room temperature X-ray diffraction analysis. The uniform grain distribution is predicted from the micrograph, and the stoichiometric chemical content of the solid solution is determined from energy dispersive X-ray technique. The acquaintance between micro structural study and frequency–temperature dependent electrical properties of the compound has revealed negative temperature coefficient of resistance behaviour. The prepared compound unveils non-Debye type relaxation. The studied compound presents important dielectric properties which substantiate the material propensity for formulation of electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)

    Article  Google Scholar 

  2. Y. Lan, X. Feng, X. Zhang, Y. Shen, D. Wang, Phys. Lett. A 380, 2962 (2016)

    Article  Google Scholar 

  3. A.K. Paul, M. Reehuis, V. Ksenofontov, B.H. Yan, A. Hoser, D.M. Többens, P.M. Abdala, P. Adler, M. Jansen, C. Felser, Phys. Rev. Lett. 111, 1 (2013)

    Article  Google Scholar 

  4. M. Saxena, K. Tanwar, T. Maiti, Scripta Mater. 130, 205 (2017)

    Article  Google Scholar 

  5. S. Bhuyan, K. Sivanand, S.K. Panda, R. Kumar, J. Hu, IEEE Magn. Lett. 2, 6000204 (2011)

    Article  Google Scholar 

  6. A.H. Slavney, T. Hu, A.M. Lindenberg, H.I. Karunadasa, J. Am. Chem. Soc. 138, 2138 (2016)

    Article  Google Scholar 

  7. X. Gao, D. Xu, J. Du, J. Li, Z. Yang, J. Sun, J. Mater. Sci. Mater. Electron. (2017). https://doi.org/10.1007/s10854-017-8017-9

    Google Scholar 

  8. M.M. Kumar, V.R. Palkar, K. Srinivas, S.V. Suryanarayana, Appl. Phys. Lett. 76, 2764 (2000)

    Article  Google Scholar 

  9. S. Halder, S. Bhuyan, S.N. Das, S. Sahoo, R.N.P. Choudhary, P. Das, K. Parida, Appl. Phys. A (2017).https://doi.org/10.1007/s00339-017-1406-3

    Google Scholar 

  10. H.J. Feng, F.M. Liu, Phys. Lett. A 372, 1904 (2008)

    Article  Google Scholar 

  11. O.E. Rhazouani, A. Slassi, Y. Ziat, A. Benyoussef, Phys. Lett. A 381, 1177 (2017)

    Article  Google Scholar 

  12. C.L. Bull, D. Gleeson, K.S. Knight, J. Phys.: Condens. Matter 15, 4927 (2003)

    Google Scholar 

  13. M. Azuma, K. Takata, T. Saito, S. Ishiwata, Y. Shimakawa, M. Takano, J. Am. Chem. Soc. 127, 8889 (2005)

    Article  Google Scholar 

  14. E. Wu, J. Appl. Cryst. 22, 506 (1989)

    Article  Google Scholar 

  15. B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, Reading, 1978)

    Google Scholar 

  16. H. Fan, S. Ke, Sci. China Technol. Sci. 52, 2180 (2009)

    Article  Google Scholar 

  17. S.K. Pradhan, S.N. Das, S. Bhuyan, C. Behera, R. Padhee, R.N.P. Choudhary, Appl. Phys. A 122, 604 (2016)

    Article  Google Scholar 

  18. K.K. Mishra, A.T. Satya, A. Bharathi, V. Sivasubramanian, V.R.K. Murthy, A.K. Arora, J. Appl. Phys. 110, 123529 (2011)

    Article  Google Scholar 

  19. S.N. Das, A. Pattanaik, S. Kadambini, S. Pradhan, S. Bhuyan, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 27, 10099 (2016)

    Article  Google Scholar 

  20. S.N. Das, S.K. Pradhan, S. Bhuyan, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 28, 18913 (2017)

    Article  Google Scholar 

  21. D.K. Pradhan, B. Behera, P.R. Das, J. Mater. Sci. Mater. Electron. 23, 779 (2012)

    Article  Google Scholar 

  22. W. Liu, G. Tan, G. Dong, X. Xue, H. Ren, A. Xia, Superlattices Microstruct. 72, 186 (2014)

    Article  Google Scholar 

  23. V. Provenzano, L.P. Boesch, V. Volterra, C.T. Moynihan, P.B. Macedo, J. Am. Ceram. Soc. 55, 492 (1972)

    Article  Google Scholar 

  24. H. Jain, C.H. Hsieh, J. Non-Cryst. Solids 172, 1408 (1994)

    Article  Google Scholar 

  25. S. Sahoo, P.K. Mahapatra, R.N.P. Choudhary, M.L. Nandagoswamy, J. Electron. Mater. 26, 6572 (2015)

    Article  Google Scholar 

  26. D.P. Almond, A.R. West, Solid State Ion. 11, 57 (1983)

    Article  Google Scholar 

  27. S.N. Das, S. Pradhan, S. Bhuyan, R.N.P. Choudhary, P. Das, J. Electron. Mater. 46, 1637 (2017)

    Article  Google Scholar 

  28. S.K. Pradhan, S.N. Das, S. Halder, S. Bhuyan, R.N.P. Choudhary, J. Electron. Mater. 28, 9627 (2017)

    Article  Google Scholar 

  29. Y. Zhang, J.P. Zhou, Q. Liu, S. Zhang, C.Y. Deng, Ceram. Int. 40, 5853 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathy, A., Das, S.N., Pradhan, S.K. et al. Temperature and frequency dependent dielectric and impedance characteristics of double perovskite Bi2MnCoO6 electronic material. J Mater Sci: Mater Electron 29, 4770–4776 (2018). https://doi.org/10.1007/s10854-017-8432-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8432-y

Navigation