Skip to main content

Advertisement

Log in

Construction of WO3/Ti-doped WO3 bi-layer nanopore arrays with superior electrochromic and capacitive performances

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

A Correction to this article was published on 21 August 2021

This article has been updated

Abstract

Crystalline WO3/Ti-doped WO3 bi-layer nanopore arrays were constructed by the template synthesis of a WO3 nanopore layer modified by a magnetron sputtering of an amorphous Ti-doped/WO3 layer. The obtained bi-layer nanopore array shows a remarkable electrochromic performance with large dual-band optical modulation in both visible (VIS) and near infrared (NIR) regions (optical modulation of over 70% in the wavelength range from 600 to 1600 nm) and the fast response speed (coloring for 3.4 s and bleaching for 6.6 s). In addition, the bi-layer WO3/Ti-doped WO3 nanopore array also present superior energy-storage properties (areal capacitance of 44.0 mF cm−2 and good rate capability), better than that of titanium-free thin films. The special bifunctional characteristics of electrochromism and pseudocapacitance can be ascribed to the large specific surface area provided by the architectural design, rich ion channels in the amorphous layer as well as proper titanium doping, which bestows the bi-layer nanopore array a great potential in clean energy applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Ling H, Lu J, Phua S, Liu H, Liu L, Huang Y, Mandler D, Lee PS, Lu X. One-pot sequential electrochemical deposition of multilayer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonic acid)/tungsten trioxide hybrid films and their enhanced electrochromic properties. J Mater Chem A. 2014;2(8):2708.

    Article  CAS  Google Scholar 

  2. Tang K, Zhang Y, Shi Y, Cui J, Shu X, Wang Y, Liu J, Wang J, Tan HH, Wu Y. Preparation of V2O5 dot-decorated WO3 nanorod arrays for high performance multi-color electrochromic devices. J Mater Chem C. 2018;6(45):12206.

    Article  CAS  Google Scholar 

  3. Shi Y, Zhang Y, Tang K, Song Y, Cui J, Shu X, Wang Y, Liu J, Wu Y. In situ growth of PEDOT/graphene oxide nanostructures with enhanced electrochromic performance. RSC Adv. 2018;8(25):13679.

    Article  CAS  Google Scholar 

  4. Li C, Engtrakul C, Tenent RC, Wolden CA. Scalable synthesis of improved nanocrystalline, mesoporous tungsten oxide films with exceptional electrochromic performance. Sol Energy Mater Sol Cells. 2015;132:6.

    Article  CAS  Google Scholar 

  5. Niklasson GA, Granqvist CG. Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these. J Mater Chem. 2006;17(2):127.

    Article  Google Scholar 

  6. Cai G, Wang X, Cui M, Darmawan P, Wang J, Eh ALS, Lee PS. Electrochromo-supercapacitor based on direct growth of NiO nanoparticles. Nano Energy. 2015;12:258.

    Article  CAS  Google Scholar 

  7. Wei D, Scherer MR, Bower C, Andrew P, Ryhänen T, Steiner U. A nanostructured electrochromic supercapacitor. Nano Lett. 2012;12(4):1857.

    Article  CAS  Google Scholar 

  8. Cheng G, Xu J, Dong C, Yang W, Kou T, Zhang Z. Anodization driven synthesis of nickel oxalate nanostructures with excellent performance for asymmetric supercapacitors. J Mater Chem A. 2014;2(41):17307.

    Article  CAS  Google Scholar 

  9. Yang P, Ding Y, Lin Z, Chen Z, Li Y, Qiang P, Ebrahimi M, Mai W, Wong CP, Wang ZL. Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett. 2014;14(2):731.

    Article  CAS  Google Scholar 

  10. Shi Y, Zhang Y, Tang K, Cui J, Shu X, Wan Y, Liu J, Jiang Y, Tan HH, Wu Y. Designed growth of WO3/PEDOT core/shell hybrid nanorod arrays with modulated electrochromic properties. Chem Eng J. 2019;355(1):942.

    Article  CAS  Google Scholar 

  11. Dong R, Ye Q, Kuang L, Lu X, Zhang Y, Zhang X, Tan G, Wen Y, Wang F. Enhanced supercapacitor performance of Mn3O4 nanocrystals by doping transition-metal ions. ACS Appl Mater Interfaces. 2013;5(19):9508.

    Article  CAS  Google Scholar 

  12. Wen RT, Niklasson GA, Granqvist CG. Strongly improved electrochemical cycling durability by adding iridium to electrochromic nickel oxide films. ACS Appl Mater Interfaces. 2015;7(18):9319.

    Article  CAS  Google Scholar 

  13. Nah YC, Ghicov A, Kim D, Berger S, Schmuki P. TiO2–WO3 composite nanotubes by alloy anodization: growth and enhanced electrochromic properties. J Am Chem Soc. 2008;130(48):16154.

    Article  CAS  Google Scholar 

  14. Mu W, Xie X, Li X, Zhang R, Yu Q, Lv K, Wei H, Jian Y. Characterizations of Nb-doped WO3 nanomaterials and their enhanced photocatalytic performance. RSC Adv. 2014;4(68):36064.

    Article  CAS  Google Scholar 

  15. Zhou D, Shi F, Xie D, Wang DH, Xia XH, Wang X, Gu CD, Tu J. Bi-functional Mo-doped WO3 nanowire array electrochromism-plus electrochemical energy storage. J Colloid Interface Sci. 2016;465:112.

    Article  CAS  Google Scholar 

  16. Zhang J, Tu JP, Cai GF, Du GH, Wang XL, Liu PC. Enhanced electrochromic performance of highly ordered, macroporous WO3 arrays electrodeposited using polystyrene colloidal crystals as template. Electrochim Acta. 2013;99:1.

    Article  CAS  Google Scholar 

  17. Phuruangrat A, Ham DJ, Hong SJ, Thongtem S, Lee JS. Synthesis of hexagonal WO3 nanowires by microwave-assisted hydrothermal method and their electrocatalytic activities for hydrogen evolution reaction. J Mater Chem. 2010;20(9):1683.

    Article  CAS  Google Scholar 

  18. Cheng L, Zhang X, Liu B, Wang H, Li Y, Huang Y, Du Z. Template synthesis and characterization of WO3/TiO2 composite nanotubes. Nanotechnology. 2005;16(8):1341.

    Article  Google Scholar 

  19. Senthilkumar R, Mahalingam T, Ravi G. Studies on growth and characterization of heterogeneous tungsten oxide nanostructures for photoelectrochemical and gas sensing applications. Appl Surf Sci. 2016;362:102.

    Article  CAS  Google Scholar 

  20. Habazaki H, Hayashi Y, Konno H. Characterization of electrodeposited WO3 films and its application to electrochemical wastewater treatment. Electrochim Acta. 2002;47(26):4181.

    Article  CAS  Google Scholar 

  21. Lee SH, Cheong HM, Tracy CE, Mascarenhas A, Benson DK, Deb SK. Raman spectroscopic studies of electrochromic a-WO3. Electrochim Acta. 1999;44(18):3111.

    Article  CAS  Google Scholar 

  22. Salje E, Viswanathan K. Physical properties and phase transitions in WO3. Acta Crystallogr Sect A. 1975;31(3):356.

    Article  Google Scholar 

  23. Daniel MF, Desbat B, Lassegues JC, Gerand B, Figlarz M. Infrared and Raman study of WO3 tungsten trioxides and WO3, xH2O tungsten trioxide tydrates. J Solid State Chem. 1987;67(2):235.

    Article  CAS  Google Scholar 

  24. Xie S, Bi Z, Chen Y, He X, Guo X, Gao X, Li X. Electrodeposited Mo-doped WO3 film with large optical modulation and high areal capacitance toward electrochromic energy-storage applications. Appl Surf Sci. 2018;459(30):774.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project is supported by the National Natural Science Foundation of China (Grant Nos. 51772072 and 51701057), the 111 Project “New Materials and Technology for Clean Energy” (Grant No. B18018), the Foundation for Tianchang Intelligent Equipment and Instruments Research Institute (Grant No. JZ2017AHDS1147), the Natural Science Foundation of Anhui Province (Grant No. 1708085ME100), and the Fundamental Research Funds for the Central Universities (Grant Nos. PA2019GDQT0022, PA2019GDQT0015, 201710359015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Zhang or Yucheng Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 13536 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Liu, S., Zhang, Y. et al. Construction of WO3/Ti-doped WO3 bi-layer nanopore arrays with superior electrochromic and capacitive performances. Tungsten 1, 236–244 (2019). https://doi.org/10.1007/s42864-019-00024-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-019-00024-7

Keywords

Navigation