Skip to main content
Log in

Dielectric and Electrical Properties of Cobalt Vanadium Doped and Undoped CCTO Ceramics Synthesized via Semi Wet Route

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

Ceramics of CaCu3Ti4O12 (CCTO) and CaCu3Ti3.95Co0.025V0.025O12 (CCTCVO) were produced using an innovative and cost-effective semi-wet route method. The formation of phases of both CCTO and CCTCVO ceramics were verified by XRD analysis. Their average crystallite sizes were measured to be approximately 60.9 ± 5.0 and 60.7 ± 5.0 nm, respectively. XPS examinations confirmed that each element maintained its proper oxidation state. The composition of the ceramics was further analyzed using EDS. At a temperature of 563 K and a frequency of 100 Hz, the recorded maximum dielectric constant values for CCTO and CCTCVO were 86,776 and 20,479, respectively. A noticeable reduction in the dielectric constant was observed at higher frequencies. The maximum dielectric loss values for the CCTO and CCTCVO ceramics were determined to be 460 and 302 at 523 K, 100 Hz and 553 K, 100 Hz, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Research data were not shared.

References

  1. E. Swatsitang, A. Niyompan, T. Putjuso, Giant dielectric, low dielectric loss and non-ohmic properties of nanocrystalline CaCu3Ti4O12. J. Mater. Sci. Mater. Electron. 24, 3514–3520 (2013)

    Article  CAS  Google Scholar 

  2. V. Brizé, G. Gruener, J. Wolfman, K. Fatyeyeva, M. Tabellout, M. Gervais, F. Gervais, Grain size effects on the dielectric constant of CaCu3Ti4O12 ceramics. Mater. Sci. Eng. B 129, 135–138 (2006)

    Article  Google Scholar 

  3. S. Jesurani, S. Kanagesan, R. Velmurugan, C. Thirupathi, M. Sivakumar, T. Kalaivani, Nanoparticles of the giant dielectric material, calcium copper titanate from a sol–gel technique. Mater. Lett. 65, 3305–3308 (2011)

    Article  CAS  Google Scholar 

  4. F. Luo, J. He, J. Hu, Y.H. Lin, Electric and dielectric behaviors of Y-doped calcium copper titanate. J. Am. Ceram. Soc. 93, 3043–3045 (2010)

    Article  CAS  Google Scholar 

  5. A.K. Rai, N.K. Singh, S.K. Acharya, L. Singh, K.D. Mandal, Effect of tantalum substitution on Microstructures and dielectric properties of Calcium copper titanate (CaCu3Ti4O12) ceramic. Mater. Sci. Eng. B 177, 1213–1218 (2012)

    Article  CAS  Google Scholar 

  6. C. Mu, H. Zhang, Y. He, P. Liu, Liu, Influence of temperature on dielectric properties of Fe-doped CaCu3Ti4O12 ceramics Physica B 405, 386–389 (2010)

  7. L.F. Xu, P.B. Qi, X.P. Song, X.J. Luo, C.P. Yang, J. Dielectric relaxation behaviors of pure and Pr6O11-doped CaCu3Ti4O12 ceramics in high temperature range 509, Alloys Compd. 105, 7697–7701 (2011)

  8. A.K. Rai, N.K. Singh, S.K. Lee, K.D. Mandal, D. Kumar, O. Parkash, Dielectric properties of iron doped calcium copper titanate, CaCu2.9Fe0.1Ti4O12. J. Alloys Compd. 509, 8901–8906 (2011)

    Article  CAS  Google Scholar 

  9. Q. Zheng, H. Fan, C. Long, Microstructures and electrical responses of pure and chromium-doped CaCu3Ti4O12 ceramics. J. Alloys Compd. 511, 90–94 (2012)

    Article  CAS  Google Scholar 

  10. Z. Yang, P. Liang, L. Yang, P. Shi, X. Chao, Z. Yang, Synthesis, dielectric properties of Bi2/3Cu3Ti4O12, Ceramics by the sol–gel method. J. Mater. Sci. Mater. Electron. 26, 1959–1968 (2015)

    Article  CAS  Google Scholar 

  11. S. Jesurani, S. Kanagesan, K. Ashok, Microstructure and dielectrical responses of pure and cobalt doped CaCu3Ti4O12 ceramics by sol–gel synthesis route. J. Sol Gel Sci. Technol. 64, 335–341 (2012). https://doi.org/10.1007/s10971-012-2862-z

    Article  CAS  Google Scholar 

  12. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J. Solid State Chem. 151, 323–325 (2000)

    Article  CAS  Google Scholar 

  13. M. Peddigari, J.H. Park, J.H. Han, C.K. Jeong, J. Jang, Y. Min, J.W. Kim, C.W. Ahn, J.J. Choi, B.D. Hahn, S.Y. Park, Flexible self-charging, ultrafast, high-power-density ceramic capacitor system. ACS Energy Lett. 6(4), 1383–1391 (2021). https://doi.org/10.1021/acsenergylett.1c00170

    Article  CAS  Google Scholar 

  14. H. Song, J. Ye, D.Y. Jeong, High energy density dielectric ceramics capacitors by aerosol deposition. J. Korean Inst. Electr. Electron. Mater. Eng. 37, 119–132 (2024). https://doi.org/10.4313/JKEM.2024.37.2.1

    Article  Google Scholar 

  15. V. Kumar, A. Kumar, M.K. Verma, S. Singh, S. Pandey, V.S. Rai, D. Prajapati, T. Das, N.B. Singh, K.D. Mandal, Investigation of dielectric and electrochemical behavior of CaCu3–xMnxTi4O12 (x = 0, 1) ceramic synthesized through semi-wet route. Mater. Chem. Phys. 245, 122804 (2020)

    Article  CAS  Google Scholar 

  16. O.A. Abdelal, A.A. Hassan, M.E. Ali, Dielectric properties of calcium copper titanates (CaCu3Ti4O12) synthesized by solid state reaction. Int. J. Adv. Res. Chem. Sci. 1, 4–10 (2014)

    Google Scholar 

  17. J. Liu, C.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, Large dielectric constant and Maxwell-Wagner relaxation in Bi2∕3Cu3Ti4O12. Phys. Rev. B 70, 144106 (2004)

    Article  Google Scholar 

  18. Z. Lu, G. Wang, W. Bao, J. Li, L. Li, A. Mostaed, H. Yang, H. Ji, D. Li, A. Feteira, F. Xu, Superior energy density through tailored dopant strategies in multilayer ceramic capacitors. Energy Environ. Sci. 13(9), 2938–2948 (2022)

    Article  Google Scholar 

  19. J.T. Irvine, D.C. Sinclair, A.R. West, Electroceramics: characterization by impedance spectroscopy. Adv. Mater. 2(3), 132–138 (1990)

    Article  CAS  Google Scholar 

  20. Y. Wang, H. Liu, T. Yan, J. Zhao, J. Li, S. Guo, S. Sun, R. Sun, Z. Lu, D. Wang, Significantly reduced conductivity in strontium titanate-based lead-free ceramics by excess bismuth. Mater. Lett. 309, 131453 (2022)

    Article  CAS  Google Scholar 

  21. C. Rayssi, M. Jebli, S. Bouzidi, J. Dhahri, H. Belmabrouk, A. Bajahzar, Impedance analysis and modulus behavior of Ca0.85Er0.1Ti(1–x)Co4x/3O3 (x = 0.15and 0.20 ceramic prepared by sol–gel reaction. Appl. Phys. A 128, 435 (2022)

    Article  CAS  Google Scholar 

  22. A. Kumar, V. Kumar, M.K. Verma, V.S. Rai, D. Prajapati, B. Jena, D.K. Verma, P. Kumari, D. Tiwary, K.D. Mandal, Dielectric and electrical properties measurement of BCTO and Co & V-doped BCTO synthesized via semi-wet route method. J. Mater. Sci. Mater. Electron. 34, 1755 (2023)

    Article  CAS  Google Scholar 

  23. L. Zhang, Z.-J. Tang, Polaron relaxation and variable-range-hopping conductivity in the giant-dielectric-constant material CaCu3Ti4O12. Phys. Rev. B 70, 174306 (2004)

    Article  Google Scholar 

  24. A. Kumar, V. Kumar et al., Studies on electrical & dielectric properties of rare-earth-based complex perovskite oxide Bi5Yb3O12 ceramic material synthesized via chemical route. J. Mater. Sci. Mater. Electron. 35, 664 (2024). https://doi.org/10.1007/s10854-024-12423-9

    Article  CAS  Google Scholar 

  25. L. Singh, L. Dhavala, R. Bhimireddi, A.A. Ansari, S. Kumar, V. Srivastava, R.N. Rai, Q. Van Le, Y. Lee, Low-cost flame synthesized La2/3Cu3Ti4O12 electro-ceramic and extensive investigation on electrical, impedance, modulus, and optical properties. Ceram. Int. 49(13), 21795–21803 (2023)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank Head, Department of Chemistry, Indian Institute of Technology (BHU) Varanasi, India, for the continuation of financial assistance as Teaching Assistantship (T.A.). We are thankful to central instrumental facility IIT BHU for providing XRD, SEM, TEM and XPS facilities.

Funding

The authors declare that they received no grants or other forms of support while preparing this paper.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the initiation and design of the study. Every author has read and given their approval for the final manuscript.

Corresponding author

Correspondence to K. D. Mandal.

Ethics declarations

Conflict of interest

The authors declare no significant financial or non-financial conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Kumar, V., Verma, M.K. et al. Dielectric and Electrical Properties of Cobalt Vanadium Doped and Undoped CCTO Ceramics Synthesized via Semi Wet Route. Trans. Electr. Electron. Mater. (2024). https://doi.org/10.1007/s42341-024-00538-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42341-024-00538-z

Keywords

Navigation