Skip to main content
Log in

Effects of synthetic routes on structural, dielectric and electrical properties of CaCu3Ti4O12 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

CaCu3Ti4O12 (CCTO) ceramics was fabricated by solid,citrate,urea and glycine methods. The major goal is to assess the effects of synthesis techniques on the structural and electrical properties of the material. Independently of the synthesis method, X-ray diffraction XRD results confirmed presence of the cubic structure main phase with space group Im \(\overline{3 }\). The average grain size of the sample CCTO varied according to the synthesis process. The surface morphology of the composite sintered at 1100 °C for 12 h obtained by scanning electron microscopy analysis indicates the evolution of large and small grains with a bimodal distribution. A high dielectric constants (ε′ ~ 104) accompanied fortunately by a lowering loss tangent ( tanδ < 0.1) was measured at room temperature in the 102 Hz- 107 Hz frequency range in all ceramics. Ceramics elaborated by the citrate method show a very interesting dielectric response, namely a relatively high dielectric constant ε' (6.735 × 104 at 1 kHz) and a low dielectric loss tanδ (0.07 at 1 kHz).In addition, the temperature stability of the dielectric constant also improved by solid, urea and glycine methods. The fits of impedance complex spectroscopy data, shows that the resistance of grain is lower than resistance of grain boundaries confirming the internal barrier layer capacitor model. This mechanism corresponds to the heterogeneous dielectric with semiconductor grains and insulating grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. G. Du, F. Wei, W. Li, N. Chen, Co-doping effects of A-site Y3+ and B-site Al3+ on the microstructures and dielectric properties of CaCu3Ti4O12 ceramics. J Eur. Ceram. Soc. 37, 4653–4659 (2017)

    Article  CAS  Google Scholar 

  2. X. Huang, H. Zhang, Y. Lai, J. Li, The lowered dielectric loss tangent and grain boundary effects in fluorine-doped calcium copper titanate ceramics. Appl. Phys. A. 123, 317 (2017)

    Article  Google Scholar 

  3. L. Ni, X.M. Chen, Enhancement of giant dielectric response in CaCu3Ti4O12 Ceramics by Zn Substitution. J. Am. Ceramic. Soc. 93, 184–189 (2010)

    Article  CAS  Google Scholar 

  4. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, High dielectric constants in ACu3Ti4O12 and ACu3Ti3FeO12. J. Solid State Chem. 151, 323–325 (2000)

    Article  CAS  Google Scholar 

  5. C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Optical response of high-dielectric-constant perovskite-related oxide. Science 293, 673 (2001)

    Article  CAS  Google Scholar 

  6. S.-Y. Chung, I.-D. Kim, S.-J.L. Kang, Strong nonlinear current–voltage behaviour in perovskite-derivative calcium copper titanate. Nat. Mater. 3, 774–778 (2004)

    Article  CAS  Google Scholar 

  7. S. Kaur, A. Kumar, A.L. Sharma, D.P. Singh, Dielectric and energy storage behavior of CaCu3Ti4O12 nanoparticles for capacitor application. Ceram. Int 45, 7743–7747 (2019)

    Article  CAS  Google Scholar 

  8. R. Schmidt, D.C. Sinclair, CaCu3Ti4O12 (CCTO) ceramics for capacitor applications. RSC Adv. 3, 1402–1621 (2014)

    Google Scholar 

  9. L.C. Kretly, A.F.L. Almeida, R.S. de Oliveira, J.M. Sasaki, A.S.B. Sombra, Electrical and optical optical properties of CaCu3Ti4O12 (CCTO) substrates for microwave devices and antennas. Microw. Opt. Technol. Lett. 39, 145–150 (2003)

    Article  Google Scholar 

  10. M. Li, X.L. Chen, D.F. Zhang, W.Y. Wang, W.J. Wang, Humidity sensitive properties of pure and Mg-doped CaCu3Ti4O12. Sens. Actuators B: Chem. 147, 447–452 (2010)

    Article  CAS  Google Scholar 

  11. A. Natkaeo, D. Phokharatkul, J.H. Hodak, A. Wisitsoraat, S.K. HodakNatkaeo, Highly selective Sub–10 Ppm H2S gas sensors based on Ag-Doped CaCu3Ti4O12 films. Sens. Actuators B: Chem. 260, 571–580 (2018)

    Article  CAS  Google Scholar 

  12. H. Yu, H. Liu, D. Luo, M. Cao, Microwave synthesis of high dielectric constant CaCu3Ti4O12. J. Mater. Process. Technol. 208, 145–148 (2008)

    Article  CAS  Google Scholar 

  13. W. Li, L. Tang, F. Xue, Z. Xin, Z. Luo, G. Du, Large reduction of dielectric losses of CaCu3Ti4O12 ceramics via air quenching. Ceram. Int. 43, 6618–6621 (2017)

    Article  CAS  Google Scholar 

  14. A. Smith, T. Calvarese, A. Sleight, M. Subramanian, An anion substitution route to lo loss colossal dielectric CaCu3Ti4O12. J. Solid State Chem. 182, 409–411 (2009)

    Article  CAS  Google Scholar 

  15. M.H. Cohen, J.B. Neaton, L. He, D. Vanderbilt, Extrinsic models for the dielectric response of CaCu3Ti4O12. J. Appl. Phys. 94, 3299 (2003)

    Article  CAS  Google Scholar 

  16. P. Lunkenheimer, R. Fichtl, S.G. Ebbinghaus, A. Loidl, Non-intrinsic origin of the colossal dielectric constants in CaCu3Ti4O12. Phys. Rev. 70, 172102 (2004)

    Article  Google Scholar 

  17. S. Krohns, P. Lunkenheimer, S.G. Ebbinghaus, A. Loidl,Broadband dielectric spectroscopy on single-crystalline and ceramic CaCu3Ti4O12.Appl. Phys. Lett. 91, 022910 (2007)

  18. P.R. Bueno, R. Tararan, R. Parra, E. Joanni, M.A. Ramírez, W.C. Ribeiro, E. Longo, J.A. Varela, A polaronic stacking fault defect model for CaCu3Ti4O12 material: an approach for the origin of the huge dielectric constant and semiconducting coexistent features. J. Phys. D: Appl. Phys. 42, 055404 (2009)

    Article  Google Scholar 

  19. W.C. Ribeiro, E. Joanni, R. Savu, P.R. Bueno, Nanoscale effects and polaronic relaxation in CaCu3Ti4O12 compounds. Solid State Commun. 151, 173–176 (2011)

    Article  CAS  Google Scholar 

  20. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, CaCu3Ti4O12: one-step internal barrier layer capacitor. Appl. Phys. Lett. 80, 2153–2155 (2002)

    Article  CAS  Google Scholar 

  21. R. Schmidt, M.C. Stennett, N.C. Hyatt, J. Pokorny, J. Prado-Gonjal, M. Li, D.C. Sinclair, Effects of sintering temperature on the internal barrier layer capacitor (IBLC) structure in CaCu3Ti4O12 (CCTO) ceramics. J. Eur. Ceram. Soc. 32, 3313–3323 (2012)

    Article  CAS  Google Scholar 

  22. J. Jumpatam, B. Putasaeng, N. Chanlek, P. Kidkhunthod, P. Thongbai, S. Maensiri, P. Chindaprasirt, Improved giant dielectric properties of CaCu3Ti4O12 via simultaneously tuning the electrical properties of grains and grain boundaries by F substitution. RSC Adv. 7, 4092–4101 (2017)

    Article  CAS  Google Scholar 

  23. M.J. Abu, J.J. Mohamed, M.F. Ain, Z.A. Ahmad, Phase structure, microstructure and broadband dielectric response of Cu nonstoichiometry CaCu3Ti4O12 ceramic. J. Alloys Compd. 683, 579–589 (2016)

    Article  CAS  Google Scholar 

  24. A. Onodera, K. Kawatani, M. Takesada, M. Oda, M. Ido, Dielectric and thermal properties of single-crystalline CaCu3Ti4O12 at high temperatures. J. Appl. Phys. 48, 09KF12 (2009)

    Article  Google Scholar 

  25. X.W. Wang, P.B. Jia, X.E. Wang, B.H. Zhang, L.Y. Sun, Q.B. Liu, Calcining temperature dependence on structure and dielectric properties of CaCu3Ti4O12 ceramics. J. Mater. Sci.: Mater Electron. 27, 12134–12140 (2016)

    CAS  Google Scholar 

  26. Y. Qiu, Z.J. Zou, L.H. Zhou, M.R. Bai, X.H. Li, Microstructure, dielectric and nonlinear electrical properties associated with sintering conditions in calcium copper titanate ceramics. J. Mater. Sci.: Mater Electron. 28, 11091–11097 (2017)

    CAS  Google Scholar 

  27. T.C. Porfirio, E.N.S. Muccillo, Dielectric properties of CaCu3Ti4O12 synthesized by different routes. J. Adv. Mater. Res. 975, 184–188 (2014)

    Article  Google Scholar 

  28. W. Hao, J. Zhang, Microstructure and dielectric property of hot-pressed high density CaCu3Ti4O12 ceramics. J. Alloys Compd. 559, 16–19 (2013)

    Article  CAS  Google Scholar 

  29. S. Saîd, S. Didry, M. El Amrani, C. Autret-Lambert, A. Megriche, Brilliant effect of Ni substitution in the appearance of high dielectric constant in CaCu2.9Ni0.1Ti3.9Ni0.1O12 Ceramics. J. Alloys Compd. 765, 927–935 (2018)

    Article  Google Scholar 

  30. V.S. Puli, S. Adireddy, M. Kothakonda, R. Elupula, D.B. Chrisey, Low temperature sintered giant dielectric constant CaCu3Ti4O12 sol-gel synthesized nanopartic capacitors. J. Adv. Dielectr. 7, 1750017 (2017)

    Article  CAS  Google Scholar 

  31. J. Liu, Y. Sui, C.-G. Duan, W.-N. Mei, R.W. Smith, J.R. Hardy, CaCu3Ti4O12: Low- temperature synthesis by pyrolysis of an organic solution. Chem. Mater. 18, 378–3882 (2006)

    Article  Google Scholar 

  32. B. Zhu, Z. Wang, Y. Zhang, Z. Yu, J. Shi, R. Xiong, Low temperature fabrication of the giant dielectric material CaCu3Ti4O12 by oxalate coprecipitation method. Mater. Chem. Phys. 113, 746–748 (2009)

    Article  CAS  Google Scholar 

  33. A.K. Rai, K.D. Mandal, D. Kumar, O. Parkash, Characterization of nickel doped CCTO: CaCu2.9Ni0.1Ti4O12 and CaCu3Ti3.9Ni0.1O12 synthesized by semi-wet route. J. Alloys Compd. 491, 507–512 (2010)

    Article  CAS  Google Scholar 

  34. J. Jumpatam, P. Thongbai, Enhanced dielectric and non-ohmic properties in CCTO/CaTiO3 nanocomposites prepared by a chemical combustion method. J. Mater. Sci.: Mater Electron. 27, 12085–12090 (2016)

    CAS  Google Scholar 

  35. K. Pal, R. Jana, A. Dey, P.P. Ray, M.M. Seikh, A. Gayen, Application of CaCu3Ti4O12 based quadruple perovskites as a promising candidate for optoelectronic devices. Chem. Phys. Lett. 699, 229–233 (2018)

    Article  CAS  Google Scholar 

  36. L. Singh, I.W. Kim, W.S. Woo, B.C. Sin, H.-I. Lee, Y. Lee, A novel low cost non-aqueous chemical route for giant dielectric constant CaCu3Ti4O12 Ceramic. Solid State Sci. 43, 35–45 (2015)

    Article  CAS  Google Scholar 

  37. P. Mao, J. Wang, S. Liu, L. Zhang, Y. Zhao, L. He, Grain size effect on the dielectric and non-ohmic properties of CaCu3Ti4O12 ceramics prepared by the sol-gel process. J. Alloys Compd. 778, 625–632 (2019)

    Article  CAS  Google Scholar 

  38. P. Thongbai, T. Yamwong, S. Maensiri, V. Amornkitbamrung, P. Chindaprasirt, Improved dielectric and nonlinear electrical properties of fine-Grained CaCu3Ti4O12 ceramics prepared by a glycine-nitrate process. J. Am. Ceram. Soc. 97, 1785–1790 (2014)

    Article  CAS  Google Scholar 

  39. D. Gingaşu, L. Patron, N. Stanica, I. Balint, Rev. Roum. Chim. 49, 669–674 (2004)

    Google Scholar 

  40. F. Amaral, M. Valente, L. Costa, Synthesis and characterization of calcium copper titanate obtained by ethylenediaminetetraacetic acid gel combustion. Mater. Chem. Phys. 124, 580–586 (2010)

    Article  CAS  Google Scholar 

  41. A. Douy, Polyacrylamide gel: an efficient tool for easy synthesis of multicomponent oxide precursors of ceramics and glasses. J. Inorg. Mater. 3, 699–707 (2001)

    Article  CAS  Google Scholar 

  42. V. Brizé, G. Gruener, J. Wolfman, K. Fatyeyeva, M. Tabellout, M. Gervais, F. Gervais, Grain size effects on the dielectric constant of CaCu3Ti4O12 ceramics. J. Mater. Sci. Eng. B. 129, 135–138 (2006)

    Article  Google Scholar 

  43. S. De Almeida-Didry, C. Autret, C. Honstettre, A. Lucas, F. Pacreau, F. Gervais, Capacitance scaling of grain boundaries with colossal permittivity of CaCu3Ti4O12 -based materials. Solid State Sci. 42, 25–29 (2015)

    Article  Google Scholar 

  44. J. Rodríguez-Carvajal, Recent advances in magnetic structure determination by neutronpowder diffraction. Phys. B:Condens. Matter. 192, 55–69 (1993)

    Article  Google Scholar 

  45. X.W. Wang, P.B. Jia, X.E. Wang, B.H. Zhang, L.Y. Sun, Q.B. Liu, Electron. 27, 12134–12140 (2016)

    CAS  Google Scholar 

  46. J. Li, A.W. Sleight, M.A. Subramanian, Evidence for internal resistive barriers in a crystal of the giant dielectric constant material: CaCu3Ti4O12. Solid State Commun. 135, 260–262 (2005)

    Article  CAS  Google Scholar 

  47. W. Li, Lu. Tang, F. Xue, Z. Xin, Z. Luo, Du. Guoping, Large reduction of dielectric losses of CaCu3Ti4O12 ceramics via air quenching. Ceram. Int. 43, 6618–6621 (2017)

    Article  CAS  Google Scholar 

  48. S. Nasri, A.L. Ben Hafsia, M. Tabellout, M. Megdiche, Complex impedance, dielectric properties and electrical conduction mechanism of La0.5Ba0.5FeO3−δ perovskite oxides. RSC Adv. 6, 76659–76665 (2016)

    Article  CAS  Google Scholar 

  49. D.-L. Sun, A.-Y. Wu, S.-T. Yin, Structure, properties, and impedance spectroscopy of CaCu3Ti4O12 ceramics prepared by sol-gel process. J. Am. Ceramic. Soc. 91, 169–173 (2008)

    Article  CAS  Google Scholar 

  50. M. Abu, M. Rahman, R. Zaman, M. Ahmadipour, J. Mohamed, M.F. Ain, Z. Ahmad, Microwave dielectric properties of Ca1+XCu3Ti4O12+X (−0.04 ≤ X ≤ 0.04) Ceramics. Procedia Chem. 19, 929–934 (2016)

    Article  CAS  Google Scholar 

  51. T.T. Fang, C.P. Liu, Evidence of internal domains for inducing the anomalously high dielectric constant of CaCu3Ti4O12. Chem. Mater. 17, 5167–5171 (2005)

    Article  CAS  Google Scholar 

  52. L. Singh, U.S. Rai, K.D. Mandal, A.K. Rai, Effect of processing routes on microstructure, electrical and dielectric behavior of Mg-Doped CaCu3Ti4O12 electro-ceramic. Appl. Phys. A. 112, 891–900 (2013)

    Article  CAS  Google Scholar 

  53. J. Mohamed, S.D. Hutagalung, Z.A. Ahmad, Influence of Sintering Parameters on Melting Cuo Phase in CaCu3Ti4O12. J. King Saud Univ. Eng. Sci. 25, 35–39 (2013)

    Google Scholar 

  54. K.M. Kim, J.H. Lee, K.M. Lee, D.Y. Kim, D.H. Riu, S.B. Lee, Microstructural evolution and dielectric properties of Cu-deficient and Cu-excess CaCu3Ti4O12 ceramics. Mater. Res. Bull. 43, 284–291 (2008)

    Article  CAS  Google Scholar 

  55. Y. Guo, J. Tan, J. Zhao, Influence of CTO additives on microstructure and electrical properties of CCTO ceramics. Mater. Chem. Phys. 278, 125659 (2022)

    Article  CAS  Google Scholar 

  56. Z. Xu, H. Qiang, Y. Chen, Z. Chen, Microstructure and enhanced dielectric properties of yttrium and zirconium co-doped CaCu3Ti4O12 ceramics. Mater. Chem. Phys. 191, 1–5 (2017)

    Article  CAS  Google Scholar 

  57. S. Ke, P. Lin, H. Huang, H. Fan, X. Zeng, Mean-field approach to dielectric relaxation in giant dielectric constant perovskite ceramics. J. Ceram. 2013, 1–7 (2013)

    Article  Google Scholar 

  58. S. Su, R. Zuo, Y. Ran, W. Zhao, X. Wang, L. Li, Microstructure, electrical properties and processing dependence of CuO modified (Na0.52K0.48)NbO3 ceramics. Ceram. - Silik. 54, 320–324 (2010)

    CAS  Google Scholar 

  59. S. Sil, J. Datta, M. Das, R. Jana, S. Halder, A. Biswas, D. Sanyal, P.P. Ray, Bias dependent conduction and relaxation mechanism study of Cu5FeS4 film and its significance in signal transport network. J. Mater. Sci. 29, 5014–5024 (2018)

    CAS  Google Scholar 

  60. M. Li, G. Cai, D.F. Zhang, W.Y. Wang, W.J. Wang, X.L. Chen, Enhanced dielectric responses in Mg-doped CaCu3Ti4O12. J. Appl. Phys. 104, 074107 (2008)

    Article  Google Scholar 

  61. FengChao Luo, JinLiang He, Hu. Jun, YuanHua Lin, Characterization of individual grain boundaries and grains of CaCu3Ti4O12 ceramic. Sci. China Technol. Sci. 55, 879–882 (2012)

    Article  CAS  Google Scholar 

  62. D. Singh, Y. Mohapatra, D. Agrawal, Dielectric and leakage current properties of sol-gel erived calcium copper titanate CaCu3Ti4O12 thin films and CCTO/ZrO2 multilayers Mater. Sci. Eng. B. 157, 58–65 (2009)

    Article  CAS  Google Scholar 

  63. L. Singh, U.S. Rai, K.D. Mandal, B.C. Sin, H. Lee, H. Chung, Y. Lee, Comparative dielectric studies of nanostructured BaTiO3, CaCu3Ti4O12 and 0.5BaTiO3⋅ 0.5 CaCu3Ti4O12 nano-composites synthesized by modified sol–gel and solid state methods. Mater. Charac. 96, 54–62 (2014)

    Article  CAS  Google Scholar 

  64. K. Parida, R.N.P. Choudhary, Structural, electrical, optical and magneto-electric characteristics of chemically synthesized CaCu3Ti4O12 dielectric ceramics. Mater. Res. Express. 4, 076302 (2017)

    Article  Google Scholar 

  65. J. Boonlakhorn, P. Kidkhunthod, P. Thongbai, A novel low cost non-aqueous chemical route for giant dielectric constant CaCu3Ti4O12 ceramic. J. Eur. Ceram. Soc. 35, 3521–3528 (2015)

    Article  CAS  Google Scholar 

  66. G. Riquet, S. Marinel, Y. Breard, C. Harnois, A. Pautrat, Direct and hybrid microwave solid state synthesis of CaCu3Ti4O12 ceramic: microstructures and dielectric properties. Ceram. Int 44, 15228–15235 (2018)

    Article  CAS  Google Scholar 

  67. J. Boonlakhorn, N. Chanlek, J. Manyam, P. Srepusharawoot, S. Krongsuk, P. Thongbai, Enhanced giant dielectric properties and improved nonlinear electrical response in acceptor−donor (Al3+, Ta5+)-substituted CaCu3Ti4O12 ceramics. J. Adv. Ceram. 10, 1243–1255 (2021)

    Article  CAS  Google Scholar 

  68. P. Mao, J. Wang, L. Zhang, Z. Wang, F. Kang, S. Liu, D.B.K. Lim, X. Wang, H. Gong, Significantly enhanced breakdown field with high grain boundary resistance and dielectric response in 0.1Na0.5Bi0.5TiO3-0.9BaTiO3 doped CaCu3Ti4O12 ceramics. J. Eur. Ceram. Soc. 40, 3011–3018 (2020)

    Article  CAS  Google Scholar 

  69. C. Zhao, J. Wu, Effects of secondary phases on the high-performance colossal permittivity in titanium dioxide ceramics. ACS Appl. Mater. Interfaces. 10, 3680–3688 (2018)

    Article  CAS  Google Scholar 

  70. A. Sakthisabarimoorthi, S.A. Martin Britto Dhas, R. Robert, M. Jose, Influence of erbium doping on the electrical behaviour of CaCu3Ti4O12 ceramics probed by impedance spectroscopy analysis. Mater. Res. Bull. 106, 81–92 (2018)

    Article  CAS  Google Scholar 

  71. S. Rhouma, A. Megriche, M. El Amrani, S. Said, S. Roger, C. Autret-Lambert, Effect of Sr/Mg co-doping on the structural, dielectric, and electrical properties of CaCu3Ti4O12 ceramics.J. Mater. Sci. Mater. Electron. 33, 4535–4549 (2022)

    Article  CAS  Google Scholar 

  72. S. Rhouma, S. Saîd, C. Autret, S. De Almeida-Didry, M. El Amrani, A. Megriche, Comparative studies of pure, Sr-doped, Ni-doped and co-doped CaCu3Ti4O12 ceramics: Enhancement of dielectric properties. J. Alloys Compd. 717, 121–126 (2017)

    Article  CAS  Google Scholar 

  73. J.L. Li, F. Li, Y.Y. Zhuang, L. Jin, L.H. Wang, X.Y. Wei, Z. Xu, S.J. Zhang, Microstructure and dielectric properties of (Nb +In) Co-doped rutile TiO2 ceramics. J. Appl. Phys. 116, 074105 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request. I declare that all information given in this manuscript is the result of my own work as well as the team cited. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non‐financial interest in the subject matter or materials discussed in this manuscript.

Funding

This research received no external funding. The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by ES, SS and DN, the material used is made available by the team of CA and AM. The first version of the manuscript was written by ES and SS and all authors have commented on previous versions of the manuscript.

Corresponding author

Correspondence to Emna Souidi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. Conflict of interest: The authors declare that they have no conflict of interest.

Ethical approval

All authors have read and agreed to the published version of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souidi, E., Saîd, S., Autret-lambert, C. et al. Effects of synthetic routes on structural, dielectric and electrical properties of CaCu3Ti4O12 ceramics. J Mater Sci: Mater Electron 33, 24228–24243 (2022). https://doi.org/10.1007/s10854-022-09144-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09144-2

Navigation