Skip to main content
Log in

Giant dielectric, low dielectric loss, and non-ohmic properties of nanocrystalline CaCu3Ti4O12

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A simple polymer pyrolysis method has been successfully used to prepare CaCu3Ti4O12 (CCTO) nanoparticles by calcination the obtained precursor powder at a low temperature of 800 (CCTO-1) and 850 °C (CCTO-2) in air for 4 h. The XRD results show that both of the calcined powders (CCTO-1 and CCTO-2) are pure having perovskite structure with the crystallite sizes, as evaluated by the XRD line boardening technique, of 47.5 and 75 nm, respectively. The particle sizes as estimated from the bright field images of TEM were found to be in the range of 10–35 and 7–52 nm for CCTO-1 and CCTO-2, respectively. The further sintering of CCTO-1 and CCTO-2 at 1,050 °C in air for 6 h, CCTO-1A and CCTO-2A, are also pure with perovskite structure as indicated by the XRD results. The measurements of the dielectric constant (\( \varepsilon^{\prime } \)) and the low loss tangent (tanδ) at 1 kHz and 20 °C of CCTO-2A were found to be ~11,472 and ~0.0438, respectively. In addition, the CCTO-2A sample shows a small temperature coefficients (\( \left| {\Updelta \varepsilon^{\prime } } \right| < 15\,\% \)) in a wide temperature range from −50 to 110 °C. The non-Ohmic properties non-linear coefficient (α) of CCTO-1A and CCTO-2A were observed and the non-linear coefficient (α) of them determined in the range of 1–10 mA cm−2 were found to be 12.00 and 7.26, respectively. Moreover, the breakdown field (E b ) of CCTO-1A and CCTO-2A ceramics obtained at J = 1 mA cm−2 were calculated and found to be 811 and 1,342 V cm−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323–325 (2000)

    Article  CAS  Google Scholar 

  2. C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Science 293, 673–676 (2001)

    Article  CAS  Google Scholar 

  3. A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, S.M. Shapiro, Solid State Commun. 115, 217–220 (2000)

    Article  CAS  Google Scholar 

  4. S.Y. Chung, I.L.D. Kim, S.J.L. Kang, Nat. Mater. 3, 774 (2004)

    Article  CAS  Google Scholar 

  5. T.B. Adams, D.C. Sinclair, A.R. West, Phys. Rev. B. 73, 094124 (2006)

    Article  Google Scholar 

  6. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153–2155 (2002)

    Article  CAS  Google Scholar 

  7. S. Krohns, P. Lunkenheimer, S.G. Ebbinghaus, A. Loidl, J. Appl. Phys. 103, 037602 (2008)

    Article  Google Scholar 

  8. P. Lunkenheimer, S. Krohns, R. Fichtl, S.G. Ebbinghaus, A. Reller, A. Loidl, Eur. Phys. J. Special Topics 108, 61–89 (2010)

    Google Scholar 

  9. M.A. Ramirez, P.R. Bueno, R. Tararam, A.A. Cavalheiro, E. Longo, J.A. Varela, J. Phys. D Appl. Phys. 2, 185503 (2009)

    Article  Google Scholar 

  10. J.J. Mohamed, S.D. Hutagalung, M.F. Ain, D. Karim, Z.A. Ahmad, Mater. Lett. 61, 1835 (2007)

    Article  CAS  Google Scholar 

  11. S.F. Shao, J.L. Zhang, P. Zheng, C.L. Wang, Solid State Commun. 142, 281 (2007)

    Article  CAS  Google Scholar 

  12. S. Kwon, C.C. Huang, M.A. Subramanian, D.P. Cann, J. Alloys Compd. 473, 433 (2009)

    Article  CAS  Google Scholar 

  13. C.-M. Wang, K.-S. Kao, S.-Y. Lin, Y.-C. Chen, S.-C. Weng, J. Phys. Chem. Solids 69, 608 (2008)

    Article  CAS  Google Scholar 

  14. J. Liu, Y. Sui, C. Duan, W.N. Mei, R.W. Smith, J.R. Hardy, Chem. Mater. 18, 3878 (2006)

    Article  CAS  Google Scholar 

  15. J. Liu, R.W. Smith, W.N. Mei, Chem. Mater. 19, 6020 (2007)

    Article  CAS  Google Scholar 

  16. L. Liu, H. Fan, P. Fang, L. Jin, Solid State Commun. 142, 573 (2007)

    Article  CAS  Google Scholar 

  17. Z. Surowiak, M.F. Kupriyanov, D. Czekaj, J. Eur. Ceram. Soc. 21, 1377–1381 (2001)

    Article  CAS  Google Scholar 

  18. S. Jesurani, S. Kanagesan, R. Velmurugan, C. Thirupathi, M. Sivakumar, T. Kalaivani, Mater. Lett. 65, 3305–3308 (2011)

    Article  CAS  Google Scholar 

  19. J. Zhao, J. Liu, G. Ma, Ceram. Int. 38, 1221–1225 (2012)

    Article  CAS  Google Scholar 

  20. C. Kumar, J. Mater. Sci. Mater. Electron. 22, 579 (2011)

    Article  CAS  Google Scholar 

  21. X.M. Liu, S.Y. Fu, H.M. Xiao, C.J. Huang, Physica B: Cond. Matt. 370, 14 (2005)

    Article  CAS  Google Scholar 

  22. P. Thongbai, B. Putasaeng, T. Yamwong, S. Maensiri, J. Alloys Compd. 509, 7416–7420 (2011)

    Article  CAS  Google Scholar 

  23. X.M. Liu, G. Yang, S.Y. Fu, Mater. Sci. Eng. C 27, 750–755 (2007)

    Article  CAS  Google Scholar 

  24. C. Masingboon, P. Thongbai, S. Maensiri, T. Yamwong, S. Seraphin, Mater. Chem. Phys. 109, 262 (2008)

    Article  CAS  Google Scholar 

  25. J.A.G. Carrio, S.B. Faldini, L.F. Miranda, P.K. Kiyohara, L.G.A. Silva, A.H. Munhoz Jr, Z. Kristallogr. 26, S537–S542 (2007)

    Article  Google Scholar 

  26. J. Lin, B. Fu, H. Lu, C. Huang, J.W. Sheng, Ceram. Int. 39, S149–S152 (2013)

    Article  Google Scholar 

  27. L. Ni, X.-M. Chen, Appl. Phys. Letts. 91, 122905 (2007)

    Article  Google Scholar 

  28. B. Cheng, Y.-H. Lin, J. Yuan, J. Cai, C.-W. Nan, X. Xiao, J. He, J. Appl. Phys. 106, 034111 (2009)

    Article  Google Scholar 

  29. S.F. Shao, J.L. Zhang, P. Zheng, W.L. Zhong, C.L. Wang, J. Appl. Phys. 99, 084106 (2006)

    Article  Google Scholar 

  30. T. Li, R. Xue, J. Hao, Y. Xue, Z. Chen, J. Alloys Compd. 509, 1025–1028 (2011)

    Article  CAS  Google Scholar 

  31. P. Thongbai, T. Yamwong, S. Maensiri, Solid State Commun. 147, 385 (2008)

    Article  CAS  Google Scholar 

  32. M. Li, A. Feteira, D.C. Sinclair, J. Appl. Phys. 105, 114109 (2009)

    Article  Google Scholar 

  33. J.L. Zhang, P. Zheng, C.L. Wang, M.L. Zhao, J.C. Li, J.F. Wang, Appl. Phys. Lett. 87, 142901 (2005)

    Article  Google Scholar 

  34. T.B. Adams, D.C. Sinclair, A.R. West, J. Am. Ceram. Soc. 89, 3129 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanin Putjuso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swatsitang, E., Niyompan, A. & Putjuso, T. Giant dielectric, low dielectric loss, and non-ohmic properties of nanocrystalline CaCu3Ti4O12 . J Mater Sci: Mater Electron 24, 3514–3520 (2013). https://doi.org/10.1007/s10854-013-1278-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1278-z

Keywords

Navigation