Optical and Ferroelectric Properties of \({\hbox {Bi}}_{0.95}{\hbox {Gd}}_{0.05}{\hbox {Fe}}_{1-x}{\hbox {Cr}}_{x}{\hbox {O}}_{3}\)


In this paper, optical and ferroelectric properties were investigated for gadolinium, \({\hbox {Gd}}^{3+}\) (5 at.%) and chromium, \({\hbox {Cr}}^{3+}\) (0–8 at.%) co-doped of BiFeO\(_3\). Chemical solution deposition (CSD) method was employed as compatible device fabrication technology to synthesize Gd and Cr co-doped multiferroic \({\hbox {BiFeO}}_{3}\) \(({\hbox {Bi}}_{0.95}{\hbox {Gd}}_{0.05}{\hbox {Fe}}_{1-x}{\hbox {Cr}}_{x}{\hbox {O}}_{3}\) with \({\hbox {x}}\) = 0–0.08). X-ray diffraction (XRD) analysis confirmed a well-defined crystalline phase with a tendency towards structural change from rhombohedral to orthorhombic symmetry. Crystallite size was found to reduce substantially from 34 to 13.5 nm with increasing the doping concentration of \({\hbox {Cr}}^{3+}\). The field emission scanning electron microscopy (FESEM) demonstrated a significant reduction in grain size of doped \({\hbox {BiFeO}}_{3}\) compared to un-doped one following the trend obtained from XRD results. Ferroelectric nature of samples was obtained from polarization versus electric field measurements. Improved ferroelectric order was displayed in co-doped \({\hbox {BiFeO}}_{3}\) with a maximum remnant polarization of 0.23 μ\({\hbox {C}}/{\hbox {cm}}^2\). Diffuse reflectance measurement by UV–Vis–NIR spectroscopy of Gd\(^{3+}\) and \({\hbox {Cr}}^{3+}\) co-doped \({\hbox {BiFeO}}_{3}\) has shown a significant reduction in the optical band-gap energy \(({\hbox {E}}_{g})\) to 1.71 eV compared to 2.03 eV of pure BiFeO\(_{3}\) counterpart.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    M.M. Rhaman, M.A. Matin, M.A. Al Mamun, A. Hussain, M.N. Hossain, B.C. Das, M.A. Hakim, M.F. Islam, J. Mater. Sci. Mater. Electron. 31, 8727 (2020)

    CAS  Article  Google Scholar 

  2. 2.

    M.A. Matin, M.M. Rhaman, M.N. Hossain, F.A. Mozahid, M.A. Hakim, M.F. Islam, Trans. Electr. Electron. Mater. 20, 485 (2019)

    Article  Google Scholar 

  3. 3.

    D. Ginley, M.A. Green, R. Collins, MRS Bull. 33, 355 (2008)

    CAS  Article  Google Scholar 

  4. 4.

    I. Gur, N.A. Fromer, M.L. Geier, A.P. Alivisatos, Science 310, 462 (2005)

    CAS  Article  Google Scholar 

  5. 5.

    B. O’Regan, M. Grätzel, Nature 353, 737 (1991)

    Article  Google Scholar 

  6. 6.

    V.M. Fridkin, B.N. Popov, Sov. Phys. Usp. 21, 981 (1978)

    Article  Google Scholar 

  7. 7.

    A.M. Glass, D. von der Linde, T.J. Negran, Appl. Phys. Lett. 25, 233 (1974)

    CAS  Article  Google Scholar 

  8. 8.

    A.M. Glass, D. von der Linde, D.H. Auston, T.J. Negran, J. Electron. Mater. 4, 915 (1975)

    CAS  Article  Google Scholar 

  9. 9.

    P.S. Brody, F. Crowne, J. Electron. Mater. 4, 955 (1975)

    CAS  Article  Google Scholar 

  10. 10.

    G. Dalba, Y. Soldo, F. Rocca, V.M. Fridkin, P. Sainctavit, Phys. Rev. Lett. 74, 988 (1995)

    CAS  Article  Google Scholar 

  11. 11.

    N. Noginova, N. Kukhtarev, T. Kukhtareva, M.A. Noginov, H.J. Caulfield, P. Venkateswarlu, D. Parker, P.P. Banerjee, J. Opt. Soc. Am. B 14, 1390 (1997)

    CAS  Article  Google Scholar 

  12. 12.

    M.M. Rhaman, M.A. Matin, M.N. Hossain, F.A. Mozahid, M.A. Hakim, M.F. Islam, Bull. Mater. Sci. 742, 190 (2019)

    Article  Google Scholar 

  13. 13.

    M.M. Rhaman, M.A. Matin, M.N. Hossain, M.N.I. Khan, M.A. Hakim, M.F. Islam, J. Phys. Chem. Solids (2020). https://doi.org/10.1109/EPTC.2017

    Article  Google Scholar 

  14. 14.

    Y.S. Yang, S.J. Lee, S. Yi, B.G. Chae, S.H. Lee, H.J. Joo, M.S. Jang, Appl. Phys. Lett. 76, 774 (2000)

    CAS  Article  Google Scholar 

  15. 15.

    L. Pintilie, I. Vrejoiu, G.L. Rhun, M. Alexe, J. Appl. Phys. 101, 064109 (2007)

    Article  Google Scholar 

  16. 16.

    T. Choi, S. Lee, Y.J. Choi, V. Kiryukhin, S.W. Cheong, Science 324, 63–66 (2009)

    CAS  Article  Google Scholar 

  17. 17.

    H. Matsuo, Y. Kitanaka, R. Inoue, Y. Noguchi, M. Miyayama, J. Appl. Phys. 118, 114101 (2015)

    Article  Google Scholar 

  18. 18.

    S.Y. Yang, L.W. Martin, S.J. Byrnes, T.E. Conrya, S.R. Basu, D. Paran, L. Reichertza, J. Ihlefeld, C. Adamo, A. Melville, Y.H. Chu, C.H. Yang, J.L. Musfeldt, D.G. Schloma, J.W. Ager, R. Ramesh, Appl. Phys. Lett. 95, 062909 (2009)

    Article  Google Scholar 

  19. 19.

    C. Himcinschi, A. Bhatnagara, A. Talkenbergera, M. Barchuk, D.R.T. Zahn, D. Rafaja, J. Kortus, M. Alexe, Appl. Phys. Lett. 106, 012908 (2015)

    Article  Google Scholar 

  20. 20.

    T. Futakuchi, T. Kakuda, Y. Sakai, J. Ceram. Soc. Jpn. 122, 464468 (2014)

    Article  Google Scholar 

  21. 21.

    T. Yokota, R. Aoyagi, M. Gomi, J. Ceram. Soc. Jpn. 121, 675678 (2013)

    Google Scholar 

  22. 22.

    A.J. Hauser, J. Zhang, L. Mier, R.A. Ricciardo, P.M. Woodward, T.L. Gustafson, L.J. Brillson, F.Y. Yang, Appl. Phys. Lett. 92, 222901 (2008)

    Article  Google Scholar 

  23. 23.

    S. Yang, G. Ma, L. Xu, C. Denga, X. Wang, RSC Adv. 9, 29238 (2019)

    CAS  Article  Google Scholar 

  24. 24.

    M.M. Rhaman, M.A. Matin, M.N. Hossain, F.A. Mozahid, M.A. Hakim, M.H. Rizvi, M.F. Islam, JEM 47, 6954 (2018)

    CAS  Article  Google Scholar 

  25. 25.

    M. Hasan, M.F. Islam, R. Mahbub, M.S. Hossain, M.A. Hakim, Mater. Res. Bull. 73, 179 (2016)

    CAS  Article  Google Scholar 

  26. 26.

    W.T.H. Koch, R. Munser, W. Ruppel, P. Wurfel, Solid State Commun. 17, 847 (1956)

    Article  Google Scholar 

  27. 27.

    S. Yukutake, T. Kawazoe, T. Yatsui, W. Nomura, K. Kitamura, M. Ohtsu, Appl. Phys. B 99, 415–422 (2010)

    CAS  Article  Google Scholar 

  28. 28.

    H.Y. Wu, Design, Synthesis and Characterization of Novel, Lead-free Multiferroic and Relaxor Materials, Master thesis, Simon Fraser University, 2019

  29. 29.

    S. Irfan, S. Rizwan, Y. Shen, L.L. Li, Asfandiyar, S. Butt, C.W. Nan, Sci. Rep. 7, 42493 (2017)

    CAS  Article  Google Scholar 

  30. 30.

    R. Yogamalar, R. Srinivasan, A. Vinu, K. Ariga, A.C. Bose, Solid State Commun. 149, 1919–1923 (2009)

    CAS  Article  Google Scholar 

  31. 31.

    T.J. Park, C.G. Papaefthymiou, J.A. Viescas, R.A. Moodenbaugh, S.S. Wong, Nano Lett. 7, 766 (2007)

    CAS  Article  Google Scholar 

  32. 32.

    Y. Yoneda, Y. Kitanaka, Y. Noguchi, M. Miyayama, Phys. Rev. B 86, 184112 (2012)

    Article  Google Scholar 

  33. 33.

    S. Karimi, I.M. Reaney, Y. Han, J. Pokorny, I. Sterianou, J. Mater. Sci. 44, 5102 (2009)

    CAS  Article  Google Scholar 

  34. 34.

    M.A. Matin, M.N. Hossain, M.H. Rizvi, M.A. Zubair, M.A. Hakim, A. Hussain, M.F. Islam, in 19th Electronics Packaging Technology Conference, Singapore, December (IEEE, 2017)

  35. 35.

    W. Zhou, H. Deng, H. Cao, J. He, J. Liu, P. Yang, J. Chu, Mater. Lett. 144, 93 (2015)

    CAS  Article  Google Scholar 

  36. 36.

    Y. Guo, L. Shi, S. Zhou, W. Liu, S. Wei, J. Phys. D Appl. Phys. 46, 175302 (2013)

    Article  Google Scholar 

  37. 37.

    A. Ianculescu, F. Prihor, P. Postolache, N. Drgan, D. Crian, Ferroelectrics 381, 67 (2009)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to M. A. Matin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Matin, M.A., Hossain, M.N., Islam, M.M. et al. Optical and Ferroelectric Properties of \({\hbox {Bi}}_{0.95}{\hbox {Gd}}_{0.05}{\hbox {Fe}}_{1-x}{\hbox {Cr}}_{x}{\hbox {O}}_{3}\). Trans. Electr. Electron. Mater. 22, 243–249 (2021). https://doi.org/10.1007/s42341-020-00235-7

Download citation


  • Ferroelectrics
  • Band-gap
  • Photovoltaic
  • Efficiency
  • Sol–gel
  • X-ray diffraction