Skip to main content

Advertisement

Log in

Bandgap Tuning of Sm and Co Co-doped BFO Nanoparticles for Photovoltaic Application

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Multiferroic \(BiFeO_3\) (BFO) with bandgap energy (\(E_g\)) between 2.2 eV to 2.7 eV is a potential candidate for photovoltaic (PV) application. However, the efficiency of BFO based PV solar cells is reportedly still too low (less than 2%) to be used for practical applications. Reducing \(E_g\) of BFO without compromising the ferroelectric properties is a big challenge to the scientific community to obtain power conversion efficiencies beyond the maximum value of 26.6% reported in general for silicon based hetero-structure PV solar cells. In this context, samarium (Sm) and cobalt (Co) co-doped BFO (\(Bi_{0.9}Sm_{0.1}Fe_{0.9}Co_{0.1}O_3\)) nanoparticles were synthesized using the sol-gel method. X-ray diffractometry was employed to determine the structure of synthesized nanoparticles. A well-defined crystalline structure of co-doped BFO nanoparticles was confirmed. Field emission scanning electron microscopy was carried out to study grain morphology of synthesized nanoparticles. Sm and Co dopants have been shown to reduce grain size significantly from 68.3 nm to 18.5 nm. An UV-Vis-NIR spectrophotometer was used to measure diffuse reflectance to calculate \(E_g\). A significant reduction of \(E_g\) down to 1.50 eV of co-doped BFO compared to undoped and or single doped counterpart has been manifested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. O’Regan and M. Graetzel, Nature 353, 737 (1991).

    Article  Google Scholar 

  2. D. Ginley, M.A. Green, and R. Collins, MRS Bull. 33, 355 (2008).

    Article  CAS  Google Scholar 

  3. I. Gur, N.A. Fromer, M.L Geier, and A.P. Alivisatos, Science 310, 462 (2005).

    Article  CAS  Google Scholar 

  4. A.M. Glass, D. von der Linde, and T.J. Negran, Appl. Phys. Lett. 25, 233 (1974).

    Article  CAS  Google Scholar 

  5. A.M. Glass, D. von der Linde, D.H. Auston and, T.J. Negran, J. Electron. Mater. 4, 915 (1975).

    Article  CAS  Google Scholar 

  6. P.S. Brody and F. Crowne, J. Electron. Mater. 4, 955 (1975).

    Article  CAS  Google Scholar 

  7. H.T. Yi, T. Choi, S.G. Choi, Y.S. Oh and, S. Cheong, Adv. Mater. 23, 3403 (2011).

    Article  CAS  Google Scholar 

  8. A.J. Hauser, J. Zhang, L. Mier, R. Ricciardo, P.M. Woodward, T.L. Gustafson, L.J. Brillson, and F. Y. Yang, Appl. Phys. Lett. 92, 222901:1 (2008)

    Article  Google Scholar 

  9. M. Arora and M. Kumar, Mater. Lett. 137, 285 (2014).

    Article  CAS  Google Scholar 

  10. M. Hasan, M.A. Basith, M.A. Zubair, M.S. Hossain, R., Mahbub, M.A Hakim, and M.F. Islam, J. Alloys Compd. 687, 701 (2016).

    Article  CAS  Google Scholar 

  11. X. Xu, T. Guoqiang, R. Huijun, and X. Ao, Ceram. Int. 39, 6223 (2013).

    Article  CAS  Google Scholar 

  12. J. Liu, M. Li, L. Pei, J. Wang, B. Yu, X. Wang, and X. Zhao, J. Alloys Compd. 493, 544 (2010).

    Article  CAS  Google Scholar 

  13. M.A. Matin, M.N. Hossain, M.H. Rizvi, M.A. Zubair, M.A. Hakim, A. Hussain, and M.F. Islam, EPTC 6–9, 2017 (2017). https://doi.org/10.1109/EPTC.2017.8277568

    Article  Google Scholar 

  14. V. Verma, A. Beniwal, A. Ohlan, and R. Tripathi, Structural. J. Magn. Magn. Mater. 394, 385 (2015).

    Article  CAS  Google Scholar 

  15. S. Irfan, Y. Shen, S. Rizwan, H.C. Wang, S.B. Khan, and C.W. Nan J. Am. Chem. Soc. 100, 31 (2016).

    Google Scholar 

  16. P.S.V. Mocherla, C. Karthik, R. Ubic, M.S.R. Rao, and C. Sudakar, Appl. Phys. Lett. 103, 022910 (2013).

    Article  Google Scholar 

  17. P.C. Sati, M. Arora, S. Chauhan, M. Kumarn, and S. Chhoker, J. Phys. Chem. Solids 75, 105 (2014).

    Article  Google Scholar 

  18. H. Lin, C.P. Huang, W. Li, C. Ni, S. I., Shah, and Y. H. Tseng, Appl. Catal., B 68, 1 (2006)

    Article  CAS  Google Scholar 

  19. N. Gao, W. Chen, R. Zhang, J. Zhang, Z. Wu, W. Mao, J. Yang, X.A. Li, and W. Huang, Comput. Theor. Chem. 1084, 36 (2016)

    Article  CAS  Google Scholar 

  20. S.M. Selbach, T. Tybell, M.A. Einarsrud, and T. Grande, Chem. Mater. 19, 6478 (2007).

    Article  CAS  Google Scholar 

  21. Y. Xu and M.A.A. Schoonen, Am. Mineral. 85, 543 (2000).

    Article  CAS  Google Scholar 

  22. M. Medarde, J. Mesot, P. Lacorre, S. Rosenkranz, P. Fischer, and K. Gobrecht, Phys. Rev. B: Condens. Matter 52, 9248 (1995).

    Article  CAS  Google Scholar 

  23. H.M \({\hbox{T}}\ddot{u}t\ddot{u}ncu\ddot{u}\), G.P. Srivastava, Phys. Rev. B: Condens. Matter, 78, 235209 (2008)

  24. M. Hasan, M.F Islam, R. Mahbub, M.S. Hossain, and M.A. Hakim, MRS Bull. 73, 179 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Rhaman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rhaman, M.M., Matin, M.A., Hossain, M.N. et al. Bandgap Tuning of Sm and Co Co-doped BFO Nanoparticles for Photovoltaic Application. J. Electron. Mater. 47, 6954–6958 (2018). https://doi.org/10.1007/s11664-018-6597-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6597-7

Keywords

Navigation