Skip to main content
Log in

Er-doped Bi3Ti(TaxNb1−x)O9 multifunctional ferroelectrics: up-conversional photoluminescence and ferroelectric properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bismuth layered-structure oxides in the Bi3Ti(TaxNb1−x)O9 quasi-binary system were synthesized by the conventional solid state reaction approach, and their ferroelectric and piezoelectric properties were evaluated together with the structures. The XRD analysis showed that all the ceramics were the single phase. It was found that the remnant polarization (Pr) reached a maximum of 4.2 µC/cm2 when x = 0.5 mol%. In addition, a bright up-conversional photoluminescence (UC) can be measured by partial substituting Er3+ for Bi3+. Under 980 nm radiation excitation, three emission bands located at green (534, 549 nm) and red (670 nm) wavelength regions were obtained at room temperature. These Er3+ doped Bi3Ti(Ta0.5Nb0.5)O9 based ferroelectrics could be used as a multifunctional material for a wide range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Aurivillius, Ark. Kemi. 1, 499 (1949)

    Google Scholar 

  2. B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, W. Jo, Nature (Lond.) 401, 682–684 (1999)

    Article  Google Scholar 

  3. P. de Araujo, C.A. Cuchiaro, J.D. McMillan, L.D.M.C. Scott, J.F. Scott, Nature (Lond.) 374, 627–629 (1995)

    Article  Google Scholar 

  4. M.D. Maeder, D. Damjanovic, N. Setier, J. Electroceram. 13, 385–392 (2004)

    Article  Google Scholar 

  5. Y.X. Li, G. Chen, H.J. Zhang, Z.H. Li, J.X. Sun, J. Solid State Chem. 181, 2653–2659 (2008)

    Article  Google Scholar 

  6. J.Q. Hu, Y. Yu, H. Guo, Z.W. Chen, A.Q. Li, X.M. Feng, B.M. Xi, G.Q. Hu, J. Mater. Chem. 21, 5352–5359 (2011)

    Article  Google Scholar 

  7. Z.J. Zhang, W.Z. Wang, W.Z. Yin, M. Shang, L. Wang, S.M. Sun, Appl. Catal. B: Environ. 101(1–2), 68–73 (2010)

    Article  Google Scholar 

  8. D.F. Peng, H.Q. Sun, X.S. Wang, J.C. Zhang, M.M. Tang, X. Yao, Blue excited photoluminescence of Pr doped CaBi2Ta2O9 based ferroelectrics. J. Alloys Compd. 511, 159 (2012)

    Article  Google Scholar 

  9. Q.Y. Zhang, X.Y. Huang, Prog. Mater. Sci. 55(5), 353–427 (2010)

    Article  Google Scholar 

  10. D.A.I. Junli, D.U. Peng, X.U. Jiadan et al., Piezoelectric and upconversion emission properties of Er 3 + -doped 0.5 Ba (Zr 0.2 Ti 0.8) O 3–0.5 (Ba 0.7 Ca 0.3) TiO 3 ceramic. J. Rare Earths 33(4), 391–396 (2015)

    Article  Google Scholar 

  11. Y. Fu, S. Gong, X. Liu et al., Crystallization and concentration modulated tunable upconversion luminescence of Er 3 + doped PZT nanofibers. J. Mater. Chem. C 3(2), 382–389 (2015)

    Article  Google Scholar 

  12. Q. Liu, B. Yin, T. Yang et al., A general strategy for biocompatible, high-effective upconversion nanocapsules based on triplet–triplet annihilation. J. Am. Chem. Soc. 135(13), 5029–5037 (2013)

    Article  Google Scholar 

  13. K. Zheng, Z. Liu, C. Lv et al., Temperature sensor based on the UV upconversion luminescence of Gd 3 + in Yb 3 + –Tm 3 + –Gd 3 + codoped NaLuF 4 microcrystals. J. Mater. Chem. C 1(35), 5502–5507 (2013)

    Article  Google Scholar 

  14. B.I. Lee, E. Lee, S.H. Byeon, Assembly of layered rare-earth hydroxide nanosheets and SiO2 nanoparticles to fabricate multifunctional transparent films capable of combinatorial color generation. Adv. Funct. Mater. 22(17), 3562–3569 (2012)

    Article  Google Scholar 

  15. H. Yan, H. Zhang, Z. Zhang et al., B-site donor and acceptor doped Aurivillius phase Bi3NbTiO9 ceramics. J. Eur. Ceram. Soc. 26(13), 2785–2792 (2006)

    Article  Google Scholar 

  16. R.W. Wolfe, R.E. Newnham, D.K.S.M.I. Kay, Crystal structure of Bi3tinbo9. Ferroelectrics 3(1), 1–7 (1972)

    Article  Google Scholar 

  17. E.C. Subbarao, A family of ferroelectric bismuth compounds. J. Phys. Chem. Solids 23(6), 665–676 (1962)

    Article  Google Scholar 

  18. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32(5), 751–767 (1976)

    Article  Google Scholar 

  19. Z. Zhou, X. Dong, H. Chen et al., Structural and electrical properties of W6 + -Doped Bi3TiNbO9 high-temperature piezoceramics. J. Am. Ceram. Soc. 89(5), 1756–1760 (2006)

    Article  Google Scholar 

  20. Y. Zhu, X. Zhang, P. Gu et al., Electrical properties of ferroelectric (SrBi2Ta2O9)1 − x(Bi3TiNbO9)x solid solution. J. Phys.: Condens. Matter 9(46), 10225 (1998)

    Google Scholar 

  21. M. Suzuki, S. Inai, T. Tokutsu et al., Ferroelectric property of Bi3TiTaO9 based ceramics with Nd substitution. Ferroelectrics 356(1), 62–66 (2007)

    Article  Google Scholar 

  22. D. Su, J.S. Zhu, Y.N. Wang et al., Different domain structures and their effects on fatigue behavior in Bi3TiTaO9 and SrBi2Ta2O9 ceramics. J. Appl. Phys. 93(8), 4784–4787 (2003)

    Article  Google Scholar 

  23. H. Yan, H. Zhang, Z. Zhang et al., B-site donor and acceptor doped Aurivillius phase Bi3 NbTiO9 ceramics. J. Eur. Ceram. Soc. 26(13), 2785–2792 (2006)

    Article  Google Scholar 

  24. Z. Zhang, H. Yan, X. Dong et al., Preparation and electrical properties of bismuth layer-structured ceramic Bi3NbTiO9 solid solution. Mater. Res. Bull. 38(2), 241–248 (2003)

    Article  Google Scholar 

  25. A. Moure, L. Pardo, C. Alemany et al., Piezoelectric ceramics based on Bi3TiNbO9 from mechanochemically activated precursors. J. Eur. Ceram. Soc. 21(s10–11), 1399–1402 (2001)

    Article  Google Scholar 

  26. H.S. Shulman, M. Testorf, D. Damjanovic et al., Microstructure, electrical conductivity, and piezoelectric properties of bismuth titanate. J. Am. Ceram. Soc. 79(12), 3124–3128 (1996)

    Article  Google Scholar 

  27. E. Downing, L. Hesselink, J. Ralston et al., A three-color, solid-state, three-dimensional display. Science 273(5279), 1185 (1996)

    Article  Google Scholar 

  28. J. Shan, M. Uddi, N. Yao et al., Anomalous Raman scattering of colloidal Yb3 + , Er3 + codoped NaYF4 nanophosphors and dynamic probing of the upconversion luminescence. Adv. Funct. Mater. 20(20), 3530–3537 (2010)

    Article  Google Scholar 

  29. G. Ding, F. Gao, G. Wu et al., Bright up-conversion green photoluminescence in Ho3 + -Yb3 + co-doped Bi4Ti3O12 ferroelectric thin films. J. Appl. Phys. 109(12), 123101 (2011)

    Article  Google Scholar 

  30. B. Dong, B. Cao, Y. He et al., Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides. Adv. Mater. 24(15), 1987–1993 (2012)

    Article  Google Scholar 

  31. W. Xu, X. Gao, L. Zheng et al., Optical thermometry through green upconversion emissions in Er3+/Yb3+-codoped CaWO4 phosphor. Appl. Phys. Express 5(7), 072201 (2012)

    Article  Google Scholar 

  32. H. Zou, J. Li, X. Wang et al., Color-tunable upconversion emission and optical temperature sensing behaviour in Er–Yb–Mo codoped Bi7Ti4NbO21 multifunctional ferroelectric oxide. Opt. Mater. Express 4(8), 1545–1554 (2014)

    Article  Google Scholar 

  33. X. Hui, D. Peng, H. Zou et al., A new multifunctional Aurivillius oxide Na0.5Er0.5Bi4Ti4O15: up-conversion luminescent, dielectric, and piezoelectric properties. Ceram. Int. 40(8), 12477–12483 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (Nos. 51072136, 50932007) and Tongji University Open Test Fund on Large-scale Instrument (No. 0002015006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanxia Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Li, Y., Zheng, F. et al. Er-doped Bi3Ti(TaxNb1−x)O9 multifunctional ferroelectrics: up-conversional photoluminescence and ferroelectric properties. J Mater Sci: Mater Electron 28, 501–506 (2017). https://doi.org/10.1007/s10854-016-5549-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5549-3

Keywords

Navigation