Skip to main content
Log in

Effects of Mg–Ca treatment and Ca treatment on impact toughness and morphology of sulfides in 45MnVS non-quenched and tempered steel

  • Review
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

An industrial experiment was conducted at a certain steel plant in China to compare and analyze the effects of Ca treatment and Mg–Ca treatment on inclusions in 45MnVS non-quenched and tempered steel. Through scanning electron microscopy-energy dispersive scanning analysis of the morphology and composition of inclusions, as well as Aspex quantitative analysis of their quantity, type and size, the formation mechanism of MnS–oxide (MnS inclusions with oxide cores) was intensively studied. The influence of sulfide morphology on the impact properties of steel was also analyzed. The results show that the quantity percentage of spindle-shaped sulfides in Ca-treated steel is 19.99%, and that in Mg–Ca-treated steel is 35.38%. Compared with Ca-treated steel, there are more MnS–oxide inclusions in Mg–Ca-treated steel. Controlling the content of Ca and Mg in the oxide core of MnS–oxide inclusion above 10 wt.% and the area ratio below 5 would contribute to the formation of spindle-shaped inclusions after rolling. The mismatch between MnS and oxides decreases with the increase in MgO content in the oxides, which is beneficial to nucleation and precipitation of MnS with this type of oxides as the core. Under the same deformation conditions, the size of sulfide does not affect its aspect ratio. Under the experimental conditions, the inclusion containing a certain amount of MgO can enhance its sulfur capacity, facilitating the formation of composite sulfides. The transverse impact energy of Ca-treated steel is 25.785 J, and that of Mg–Ca-treated steel is 32.119 J. Compared with the traditional Ca-treatment, Mg–Ca treatment can increase the number of spindle-shaped sulfides in the steel, thereby improving the transverse impact toughness of the steel and reducing the anisotropy of the mechanical properties of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. K. Wang, T. Yu, Y. Song, H.X. Li, M.D. Liu, R. Luo, J.Y. Zhang, F.S. Fang, X.D. Lin, Metall. Mater. Trans. B 50 (2019) 1213–1224.

    Article  Google Scholar 

  2. Z. Yang, Y.Z. Liu, L.Y. Zhou, G.W. Li, D. Zhang, Adv. Mater. Res. 311–313 (2011) 1648–1652.

    Article  Google Scholar 

  3. Z. Gu, S. Yang, S. Ku, Y. Zhao, X. Dai, Int. J. Adv. Manuf. Technol. 25 (2005) 883–887.

    Article  Google Scholar 

  4. B. Zhou, Y. Shen, L. Tan, H.X. Yang, W.Q. Cao, Y.Z. Bao, Phys. Procedia 50 (2013) 25–31.

    Article  Google Scholar 

  5. D. Lou, K. Cui, Y. Jia, J. Mater. Eng. Perform. 6 (1997) 215–218.

    Article  Google Scholar 

  6. S.B. Hosseini, C. Temmel, B. Karlsson, N.G. Ingesten, Metall. Mater. Trans. A 38 (2007) 982–989.

    Article  Google Scholar 

  7. H. Wei, X. Gao, Q. Ren, L. Zhang, Metall. Res. Technol. 119 (2022) 609.

    Article  Google Scholar 

  8. M.T. Ma, G.Z. Li, Z.G. Li, H.Z. Lu, Adv. Mater. Res. 51 (2008) 11–20.

    Article  Google Scholar 

  9. A. Ghosh, S. Sahoo, M. Ghosh, R.N. Ghosh, D. Chakrabarti, Mater. Sci. Eng. A 613 (2014) 37–47.

    Article  Google Scholar 

  10. N. Tsunekage, H. Tsubakino, ISIJ Int. 41 (2001) 498–505.

    Article  Google Scholar 

  11. B. Jiang, W. Fang, R. Chen, D. Guo, Y. Huang, C. Zhang, Y. Liu, Mater. Sci. Eng. A 748 (2019) 180–188.

    Article  Google Scholar 

  12. M. Wu, W. Fang, R.M. Chen, B. Jiang, H.B. Wang, Y.Z. Liu, H.L. Liang, Mater. Sci. Eng. A 744 (2019) 324–334.

    Article  Google Scholar 

  13. M.C. Jo, S. Kim, S. Kim, J. Oh, I.S. Suh, S. Lee, Metall. Mater. Trans. A 50 (2019) 1672–1681.

    Article  Google Scholar 

  14. K. Oikawa, H. Ohtani, K. Ishida, T. Nishizawa, ISIJ Int. 35 (1995) 402–408.

    Article  Google Scholar 

  15. J. Chu, L. Zhang, J. Yang, Y. Bao, N. Ali, C. Zhang, Mater. Charact. 194 (2022) 112367.

    Article  Google Scholar 

  16. J. Maciejewski, J. Fail. Anal. Preven. 15 (2015) 169–178.

    Article  Google Scholar 

  17. X.J. Shao, X.H. Wang, C.X. Ji, H.B. Li, Y. Cui, G.S. Zhu, Int. J. Miner. Metall. Mater. 22 (2015) 483–491.

    Article  Google Scholar 

  18. X.Y. Xie, C. Gu, M. Wang, Y.P. Bao, X.Z. Luo, G.J. Peng, Iron and Steel 56 (2021) No. 12, 52–61.

    Google Scholar 

  19. K.Y. Miao, M. Nabeel, N. Dogan, Metall. Mater. Trans. B. 53 (2022) 2897–2913.

    Article  Google Scholar 

  20. C. Liu, Y. Kacar, B. Webler, P.C. Pistorius, Metall. Mater. Trans. B 52 (2021) 2837–2841.

    Article  Google Scholar 

  21. Y.T. Guo, S.P. He, G.J. Chen, Q. Wang, Metall. Mater. Trans. B 47 (2016) 2549–2557.

    Article  Google Scholar 

  22. H. Ahmad, F. Tang, Z. Yao, Y. Xu, Z. Huang, B. Zhao, X. Ma, Metals 13 (2023) 1153.

    Article  Google Scholar 

  23. G.Z. Li, F.M. Wang, R. Hui, W.K. Cao, Int. J. Miner. Metall. Mater. 16 (2009) 650–653.

    Google Scholar 

  24. S. Kimura, K. Nakajima, S. Mizoguchi, Metall. Mater. Trans. B 32 (2001) 79–85.

    Article  Google Scholar 

  25. J. Fu, Y.G. Yu, A.R. Wang, B.P. Chen, J. Mater. Sci. Technol. 14 (1998) 53–56.

    Article  Google Scholar 

  26. T.S. Zhang, D.Y. Wang, C.W. Liu, M.F. Jiang, M. Lü, B. Wang, S.X. Zhang, J. Iron Steel Res. Int. 21 (2014) 99–103.

    Article  Google Scholar 

  27. K.N. Ai, J.B. Xie, Z.Q. Zeng, D. Zhang, N.F. Liu, J.X. Fu, J. Iron Steel Res. 31 (2019) 361–367.

    Google Scholar 

  28. W. Liu, S.F. Yang, J.S. Li, J.K. Li, S. Zhang, Iron and Steel 52 (2017) No. 12, 21–27.

    Google Scholar 

  29. X.F. He, L. Xu, M.Q. Wang, Z.H. Wang, Metal Heat Treatment 44 (2019) No. 4, 90–94.

    Google Scholar 

  30. Y. Xie, X. Meng, X. Deng, S. Li, Ironmak. Steelmak. 50 (2023) 592–598.

    Article  Google Scholar 

  31. P. Shen, J. Fu, Materials 12 (2019) 197.

    Article  Google Scholar 

  32. J. Tian, D.Y. Wang, T.P. Qu, L.J. Su, X.R. E, Iron and Steel 52 (2017) No. 11, 27–31.

    Google Scholar 

  33. J. Tian, T. Qu, D. Wang, H. Wang, Z. Xu, E. Xinrui, (2018) Arch. Metall. Mater. 1599–1607

  34. L. Su, J. Tian, S. Hu, M. Lv, X. Li, T. Qu, D. Wang, T. Zhan, Metals 13 (2022) 23.

    Article  Google Scholar 

  35. A. Ghosh, P. Modak, R. Dutta, D. Chakrabarti, Mater. Sci. Eng. A 654 (2016) 298–308.

    Article  Google Scholar 

  36. A. Segal, J.A. Charles, Met. Technol. 4 (1977) 177–182.

    Article  Google Scholar 

  37. Y. Li, G. Cheng, J. Lu, H. Long, Met. Mater. Int. 29 (2023) 1019–1033.

    Article  Google Scholar 

  38. L. Jiang, K. Cui, Steel Res. 68 (1997) 163–168.

    Article  Google Scholar 

  39. C.H. Leung, L.H. Van Vlack, Metall. Trans. A 12 (1981) 987–991.

    Article  Google Scholar 

  40. T. Kano, T. Hanyuda, Electric Steelmaking 75 (2004) 27–34.

    Google Scholar 

  41. Z. Wu, W. Zheng, G. Li, H. Matsuura, F. Tsukihashi, Metall. Mater. Trans. B 46 (2015) 1226–1241.

    Article  Google Scholar 

  42. J. Lu, G. Cheng, J. Che, L. Wang, G. Xiong, Met. Mater. Int. 25 (2019) 473–486.

    Article  Google Scholar 

  43. Q. Ren, W. Yang, L. Cheng, L. Zhang, A.N. Conejo, Metall. Mater. Trans. B 51 (2020) 200–212.

    Article  Google Scholar 

  44. Y. Wang, S. Sridhar, M. Valdez, Metall. Mater. Trans. B 33 (2002) 625–632.

    Article  Google Scholar 

  45. M. Wakoh, T. Sawai, S. Mizoguchi, Tetsu-to-Hagane 78 (1992) 1697–1704.

    Google Scholar 

  46. H.S. Kim, H.G. Lee, O.H. Kyung-Shik, Met. Mater. 6 (2000) 305–310.

    Article  Google Scholar 

  47. M. Wakoh, T. Sawai, S. Mizoguchi, ISIJ Int. 36 (1996) 1014–1021.

    Article  Google Scholar 

  48. H. Goto, K.I. Miyazawa, T. Kadoya, ISIJ Int. 35 (1995) 1477–1482.

    Article  Google Scholar 

  49. M.M. Nzotta, S. Du, S. Seetharaman, Metall. Mater. Trans. B 30 (1999) 909–920.

    Article  Google Scholar 

  50. M.M. Nzotta, S. Du, S. Seetharaman, ISIJ Int. 38 (1998) 1170–1179.

    Article  Google Scholar 

  51. G.L. Hua, T.R. Welberry, R.L. Withers, J.G. Thompson, J. Appl. Crystallogr. 21 (1988) 458–465.

    Article  Google Scholar 

  52. D. Turnbull, B. Vonnegut, Ind. Eng. Chem. 44 (1952) 1292–1298.

    Article  Google Scholar 

  53. B.L. Bramfitt, Metall. Trans. 1 (1970) 1987–1995.

    Article  Google Scholar 

  54. W.A. Spitzig, Metall. Trans. A 14 (1983) 471–484.

    Article  Google Scholar 

  55. W. Roberts, B. Lehtinen, K.E. Easterling, Acta Metall. 24 (1976) 745–758.

    Article  Google Scholar 

  56. S. Maropoulos, N. Ridley, Mater. Sci. Eng. A 384 (2004) 64–69.

    Article  Google Scholar 

  57. G.R. Speich, W.A. Spitzig, Metall. Trans. A 13 (1982) 2239–2258.

    Article  Google Scholar 

  58. C. Kaynak, A. Ankara, T.J. Baker, Mater. Sci. Technol. 12 (1996) 557–562.

    Article  Google Scholar 

  59. J. Nomani, A. Pramanik, T. Hilditch, G. Littlefair, Int. J. Adv. Manuf. Technol. 80 (2015) 1127–1135.

    Article  Google Scholar 

  60. H. Yaguchi, N. Onodera, ISIJ Int. 28 (1988) 1051–1059.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52074186 and 51704200), Jiangsu province Natural Science Fund (No. BK20150336) and Project sponsored by the State Key Laboratory of Refractories and Metallurgy (Wuhan University of Science and Technology) (No. G202304).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Tian or Xiang-long Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, Ty., Tian, J., Li, Xl. et al. Effects of Mg–Ca treatment and Ca treatment on impact toughness and morphology of sulfides in 45MnVS non-quenched and tempered steel. J. Iron Steel Res. Int. (2024). https://doi.org/10.1007/s42243-024-01215-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42243-024-01215-4

Keywords

Navigation