Skip to main content
Log in

Effect of volume fraction and shape of sulfide inclusions on through-thickness ductility and impact energy of high-strength 4340 plate steels

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The effect of volume fraction and shape of sulfide inclusions on the tensile ductility and impact energy of high-strength AISI 4340 plate steels in the transverse and through-thickness testing directions was investigated for four tensile-strength levels of 930, 1210, 1410, and 1960 MPa (135, 175, 205, and 285 ksi). The volume fraction of sulfide inclusions was changed by varying the sulfur content from 0.002 to 0.022 pct. The shape of the sulfide inclusions was changed from lenticular MnS to spheroidal RE2O2S (RExSy) by rare-earth treatment. Axisymmetric tensile ductility and charpy impact energy [22 °C (72 °F)] decreased much more rapidly in the through-thickness testing direction than in the transverse testing direction when the volume fraction of sulfide inclusions was increased. Changing the shape of the sulfide inclusions from lenticular MnS to spheroidal RE2O2S (RExSy) by rare-earth treatment increased axisymmetric tensile ductility and impact energy in the through-thickness testing direction for tensile-strength levels at or below 1410 MPa (205 ksi), but not at 1960 MPa (285 ksi). Impact energy was also improved in the transverse testing direction but only for tensile strength levels at or below 1210 MPa (175 ksi). Changes in the volume fraction or shape of the sulfide inclusions had little or no effect on transition temperature. Plane-strain tensile ductility was much less affected than either axisymmetric tensile ductility or impact energy by changes in inclusion morphology or in testing direction because of the formation of macroscopic shear bands inclined at about 45 deg to the tensile axis. As a result impact energy correlated better with axisymmetric tensile ductility than with plane-strain tensile ductility. The results are discussed in terms of various models involving the formation of voids at inclusion sites and their growth and eventual coalescence by localized shear during plastic straining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.U. Hodge, R.H. Frazier, and F.W. Boulger:Trans. TMS-AIME, 1959, vol. 215, pp. 745–53.

    CAS  Google Scholar 

  2. A.J. Birkle, R. P. Wei, and G. F. Pellissier:Trans. ASM, 1966, vol. 54, pp. 981–90.

    Google Scholar 

  3. L. F. Porter: unpublished research, U.S. Steel Research Laboratory, Monroeville, PA, 1970.

  4. I.J. Hauser, M. G. H. Wells, and I. Perlmutter:J. Vac. Sci. Tech., 1972, vol. 9, pp. 1339–41.

    Article  Google Scholar 

  5. L. F. Porter: discussion to above paper,ibid, pp. 1340–43.

    Article  CAS  Google Scholar 

  6. T. B. Cox and J. R. Low:Metall. Trans., 1974, vol. 5, pp. 1457–70.

    Article  CAS  Google Scholar 

  7. E. Smith, T. S. Cook, and C. A. Rau:Fracture, D. M. R. Taplin, ed., University of Waterloo Press, 1977, vol. 2, pp. 215-36.

  8. J. N. Hancock and A. C. Mackenzie:J. Mech. Phys. Solids, 1976, vol. 24, pp. 147–69.

    Article  Google Scholar 

  9. L. F. Porter: “Lamellar Tearing in Plate Steels” (A Literature Survey), AISI, August 1975.

  10. D.H. Skinner and M. Toyama:Welding Res. Bull., 1977, vol. 232, pp. 1–20.

    Google Scholar 

  11. W. A. Spitzig and R. J. Sober:Metall. Trans. A, 1981, vol. 12A, pp. 281–91.

    Google Scholar 

  12. R. Kiessling:Non-Metallic Inclusions in Steel, The Metals Society, London, 1978, part III, pp. 1–118.

    Google Scholar 

  13. D.P. Clausing:Int. J. Fract. Mechanics, 1970, vol. 6, pp. 71–85.

    Google Scholar 

  14. R. J. Lee, W. A. Spitzig, J. F. Kelly, and R. M. Fisher:J. Metals, 1981, vol. 33, no. 3, pp. 20–25.

    CAS  Google Scholar 

  15. W. G. Wilson and M. G. H. Wells:Metal Progress, December 1973, vol. 104, pp. 75–77.

    CAS  Google Scholar 

  16. P.E. Waudby:Int. Met. Reviews, 1978, vol. 2, pp. 74–98.

    Google Scholar 

  17. G.R. Speich and D.S. Dabkowski: inToughness Characterization and Specifications for HSLA and Structural Steels, P. L. Manganon, ed., TMS-AIME, Warrendale, PA, 1979, pp. 257–87.

    Google Scholar 

  18. G.R. Speich and W. C. Leslie:Metall. Trans., 1972, vol. 3, pp. 1043–54.

    Article  CAS  Google Scholar 

  19. T. Z. Kattamis and M.C. Flemings:Trans. TMS-AIME, 1965, vol. 233, pp. 992–99.

    CAS  Google Scholar 

  20. H. Muir, B.L. Averbach, and Morris Cohen:Trans. ASM, 1955, vol. 47, pp. 380–407.

    Google Scholar 

  21. H.C. Rogers:Ductility, ASM, Metals Park, OH, 1968, pp. 31–71.

    Google Scholar 

  22. L. Anand and W. A. Spitzig:J. Mech. Phys. Solids, 1980, vol. 28, pp. 113–28.

    Article  Google Scholar 

  23. L. Anand and W. A. Spitzig:Acta Metall., 1982, vol. 30, pp. 553–61.

    Article  CAS  Google Scholar 

  24. L. M. Brown and J. D. Embury: inMicro-structure and Design of Alloys, Cambridge, England, 1973, vol. I.

  25. A. Melander and U. Stahlberg:Mat. Sci. and Eng., 1979, vol. 39, pp. 57–63.

    Article  Google Scholar 

  26. A. Melander and U. Stahlberg:Int. J. Fracture, 1980, vol. 16, pp. 431–30.

    Article  Google Scholar 

  27. F. A. McClintock:J. App. Mech., 1968, vol. 35, pp. 363–67.

    Google Scholar 

  28. F. A. McClintock:Ductility, ASM, Metals Park, OH, 1968, pp. 255–78.

    Google Scholar 

  29. P. F. Thomason:J. Inst. Metals, 1968, vol. 96, pp. 360–65.

    Google Scholar 

  30. T. J. Baker, K. B. Gove, and J. A. Charles:Metals Technology, 1976, vol. 3, pp. 183–93.

    Google Scholar 

  31. T. Gladman, B. Holmes, and I.D. Mclvor:Effect of Second-Phase Particles on the Mechanical Properties of Steel, Iron and Steel Institute, London, 1971, pp. 68–78.

    Google Scholar 

  32. T. J. Baker and J. A. Charles:, pp. 79–87.

    Google Scholar 

  33. H.C. Rogers:Trans. TMS-AIME, 1960, vol. 218, pp. 498–506.

    Google Scholar 

  34. J.B. Rice:Proc. of the 14th Int. Cong, on Theoretical and Applied Mechanics, Delft, North Holland, 1972, vol. 1, pp. 207–12.

    Google Scholar 

  35. W. A. Spitzig; U.S. Steel Research Laboratory, Monroe ville, PA, private communication, May 1981.

  36. H. Yamamoto:Int. J. Fracture, 1978, vol. 14, pp. 347–65.

    Article  Google Scholar 

  37. H.L. Morrison and O. Richmond:J. App. Mech., 1972, vol. 39, series E, pp. 971–77.

    Google Scholar 

  38. N. P. Sun and A. P. L. Turner:Elements of the Mechanical Behavior of Solids, McGraw-Hill, New York, NY, 1975.

    Google Scholar 

  39. E. J. Appleby, R. E. Smelzer, and O. Richmond: U. S. Steel Research Laboratory, Monroeville, PA, private communication, May 1981.

  40. G. B. Olson, A. A. Anctil, T. S. DeSisto, and E. B. Kula: AMMRC TR-82-1, Army Materials and Mechanics Research Center, Watertown, MA, January 1982.

  41. 41. R.O. Ritchie:What Does the Charpy Impact Test Really Tell Us, ASM, Metals Park, OH, 1978, pp. 54–73.

    Google Scholar 

  42. J. F. Knoft:Proc. 4th Int. Conf. on Fracture, University of Waterloo Press, Waterloo, Ontario, 1977, vol. 1, pp. 61–92.

    Google Scholar 

  43. J. M. Barsom and S. T. Rolfe:Impact Testing of Metals, Am. Soc. for Testing Materials, STP 466, Philadelphia, PA, 1970, pp. 281–302.

    Google Scholar 

  44. A. D. Wilson:J. Eng. Materials and Technology, 1979, vol. 104, pp. 265–74.

    Article  Google Scholar 

  45. A.D. Wilson:Elastic Plastic Fracture, ASTM, Philadelphia, PA, 1979, pp. 469–92.

    Google Scholar 

  46. F. B. Pickering:Toward Improved Ductility and Toughness, Climax Molybdenum Corporation, Kyoto, 1971, pp. 9–32.

    Google Scholar 

  47. I. Kozasu and J. Tanaka:Sulfide Inclusions in Steel, ASM, Metals Park, OH, 1975, pp. 286–308.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Speich, G.R., Spitzig, W.A. Effect of volume fraction and shape of sulfide inclusions on through-thickness ductility and impact energy of high-strength 4340 plate steels. Metall Trans A 13, 2239–2258 (1982). https://doi.org/10.1007/BF02648395

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02648395

Keywords

Navigation