Skip to main content
Log in

Effect of nano-carbon black content on wetting phenomenon of molten steel and alumina–carbon ceramic filter substrates

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The effect of nano-carbon black content (0, 8 and 12 wt.%) on the wettability of molten steel on Al2O3–C substrates was investigated by the sessile drop wetting method at 1500 °C under argon atmosphere. At the beginning of the wetting experiment, the contact angle decreased with the increase in nano-carbon black content. As the wetting experiment progressed, FeAl2O4 layer and sheet Al2O3 layer were found at the interface between the molten steel and the Al2O3–C substrates with 0 and 8 wt.% nano-carbon black content, and the contact angle deceased with time. When the content of nano-carbon black was 12 wt.%, a large number of nano-Al2O3 whiskers were observed, which made the contact angle between the molten steel and Al2O3–C substrate become large. Based on the scanning electron microscope and energy dispersive spectrometry results, the formation mechanism of FeAl2O4 layer and Al2O3 layer and the interfacial reaction mechanism were proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D. Apelian, R. Mutharasan, S. Ali, J. Mater. Sci. 20 (1985) 3501–3514.

    Article  Google Scholar 

  2. Y. Kang, B. Sahebkar, P.R. Scheller, K. Morita, D. Sichen, Metall. Mater. Trans. B 42 (2011) 522–534.

    Article  Google Scholar 

  3. K. Wasai, K. Mukai, A. Miyanaga, ISIJ Int. 42 (2002) 459–466.

    Article  Google Scholar 

  4. Y. Wang, X. Zhang, L. Cheng, J. Liu, T. Hou, K. Wu, J. Mater. Res. Technol. 13 (2021) 2419–2432.

    Article  Google Scholar 

  5. T.Y. Chen, Y. Jin, Z.Y. Cheng, Z.X. Yuan, Y.J. Bi, J. Liu, J. Wuhan Univ. Technol. Mater. Sci. Ed. 35 (2020) 1122–1127.

    Article  Google Scholar 

  6. C.Y. Zhu, P.J. Chen, G.Q. Li, X.Y. Luo, W. Zheng, ISIJ Int. 56 (2016) 1368–1377.

    Article  Google Scholar 

  7. S. Guo, H.Y. Zhu, J. Zhou, M.M. Song, S. Dong, Steel Res. Int. 93 (2022) 2200388.

    Article  Google Scholar 

  8. K.I. Uemura, M. Takahashi, S. Koyama, M. Nitta, ISIJ Int. 32 (1992) 150–156.

    Article  Google Scholar 

  9. Y. Liu, W. Yan, Z. Chen, J.F. Chen, Y. Liu, G.Q. Li, J. Eur. Ceram. Soc. 43 (2023) 3794–3803.

    Article  Google Scholar 

  10. Q. Wang, Y. Liu, A. Huang, W. Yan, H.Z. Gu, G.Q. Li, Metall. Mater. Trans. B 51 (2020) 276–292.

    Article  Google Scholar 

  11. Q.L. Chen, W. Yan, S. Schafföner, H. Wu, B.Q. Han, J.H. Zhang, Y.W. Li, J. Eur. Ceram. Soc. 43 (2023) 2654–2662.

    Article  Google Scholar 

  12. Y. Liu, W. Yan, Z. Chen, J.J. Yan, Q. Wang, G.Q. Li, Int. J. Appl. Ceram. Technol. 20 (2023) 2289–2300.

    Article  Google Scholar 

  13. C. Liu, A.D. Xiao, Z. He, W. Yan, G.Q. Li, Q. Wang, Steel Res. Int. 93 (2022) 2100818.

    Article  Google Scholar 

  14. X. Liang, Y.W. Li, W. Yan, Q.H. Wang, F.G. Tan, Z. He, S.B. Sang, J. Eur. Ceram. Soc. 41 (2021) 2290–2296.

    Article  Google Scholar 

  15. H.L. Wang, Y.B. Li, B. Yin, S.J. Li, R.F. Xiang, H. Luo, S.Q. Li, Z.M. Zhou, Mater. Today Commun. 33 (2022) 104510.

    Article  Google Scholar 

  16. H.L. Wang, S.J. Li, Y.B. Li, R.F. Xiang, H. Luo, Z.M. Zhou, Z.H. Zhang, W.J. Guo, J. Eur. Ceram. Soc. 41 (2021) 864–870.

    Article  Google Scholar 

  17. H. Luo, Y.B. Li, R.F. Xiang, S.J. Li, J. Luo, H.L. Wang, X.S. Li, J. Eur. Ceram. Soc. 40 (2020) 173–180.

    Article  Google Scholar 

  18. S. Dudczig, C.G. Aneziris, M. Emmel, G. Schmidt, J. Hubalkova, H. Berek, Ceram. Int. 40 (2014) 16727–16742.

    Article  Google Scholar 

  19. M. Emmel, C.G. Aneziris, G. Schmidt, D. Krewerth, H. Biermann, Adv. Eng. Mater. 15 (2013) 1188–1196.

    Article  Google Scholar 

  20. C. Himcinschi, C. Biermann, E. Storti, B. Dietrich, G. Wolf, J. Kortus, C.G. Aneziris, J. Eur. Ceram. Soc. 38 (2018) 5580–5589.

    Article  Google Scholar 

  21. Y.B. Li, R.F. Xiang, N.N. Xu, Q.H. Wang, S.J. Li, M.F. Wu, C.R. Yang, Int. J. Appl. Ceram. Technol. 15 (2018) 1054–1059.

    Article  Google Scholar 

  22. R. Khanna, S. Kongkarat, S. Seetharaman, V. Sahajwalla, ISIJ Int. 52 (2012) 992–999.

    Article  Google Scholar 

  23. T. Zienert, S. Dudczig, O. Fabrichnaya, C.G. Aneziris, Ceram. Int. 41 (2015) 2089–2098.

    Article  Google Scholar 

  24. J.F. Liu, Y.B. Li, B. Yin, S.J. Li, P. Chen, Int. J. Appl. Ceram. Technol. 20 (2023) 371–379.

    Article  Google Scholar 

  25. E. Kapilashrami, A. Jakobsson, S. Seetharaman, A.K. Lahiri, Metall. Mater. Trans. B 34 (2003) 193–199.

    Article  Google Scholar 

  26. M.E. Valdez, P. Uranga, K. Fuchigami, H. Shibata, A.W. Cramb, Metall. Mater. Trans. B 37 (2006) 811–821.

    Article  Google Scholar 

  27. L. Zhao, V. Sahajwalla, ISIJ Int. 43 (2003) 1–6.

    Article  Google Scholar 

  28. W. Yan, A. Schmidt, S. Dudczig, T. Wetzig, Y.W. Wei, Y.W. Li, S. Schafföner, C.G. Aneziris, J. Eur. Ceram. Soc. 38 (2018) 2164–2178.

    Article  Google Scholar 

  29. R.F. Xiang, Y.B. Li, S.J. Li, Z.L. Xue, H.L. Wang, Int. J. Appl. Ceram. Technol. 18 (2021) 1792–1800.

    Article  Google Scholar 

  30. S. Ouyang, Y.B. Li, S.J. Li, D.G. Ouyang, R.F. Xiang, N.N. Xu, Trans. Indian Ceram. Soc. 79 (2020) 182–187.

    Article  Google Scholar 

  31. Q.R. Zhou, Y.B. Li, R.F. Xiang, S.J. Li, S. Ouyang, X. Li, J. Aust. Ceram. Soc. 56 (2020) 301–308.

    Article  Google Scholar 

  32. Y.B. Fan, S.J. Li, Y.B. Li, H.Q. Liang, M.X. Tang, K.K. Huang, L. Zhu, J. Build. Eng. 44 (2021) 103427.

    Article  Google Scholar 

  33. Z. Qiao, S.J. Li, Y.B. Li, J.N. Wang, Ceram. Int. 47 (2021) 31194–31201.

    Article  Google Scholar 

  34. J.J. Hu, S.J. Li, Y.B. Li, Z.P. Wei, X.S. Li, C. Dong, Y. Zhang, Y.B. Fan, J. Aust. Ceram. Soc. 57 (2021) 1553–1562.

    Article  Google Scholar 

  35. X.S. Li, Y.B. Li, S.J. Li, Z.P. Wei, R.F. Xiang, Int. J. Appl. Ceram. Technol. 17 (2020) 2465–2472.

    Article  Google Scholar 

  36. Q.H. Wang, G. He, S.X. Deng, J. Liu, X.Y. Li, J.Q. Li, Y.W. Li, J.T. Li, Ceram. Int. 45 (2019) 21365–21372.

    Article  Google Scholar 

  37. M. Humenik Jr., W.D. Kingery, J. Am. Ceram. Soc. 37 (1954) 18–23.

    Article  Google Scholar 

  38. H. Sun, K. Mori, V. Sahajwalla, R.D. Pehlke, High Temp. Mater. Proces. 17 (1998) 257–270.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (No. 51974214) and the Natural Science Funds of Hubei Province for Distinguished Young Scholars (Grant No. 2020CFA088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Yan.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Jw., Yan, W., Chen, Z. et al. Effect of nano-carbon black content on wetting phenomenon of molten steel and alumina–carbon ceramic filter substrates. J. Iron Steel Res. Int. (2024). https://doi.org/10.1007/s42243-024-01193-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42243-024-01193-7

Keywords

Navigation