Skip to main content
Log in

Evolution of inclusion and microstructure in Ti–Zr deoxidized steel during hot compression

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The effects of different hot deformation amounts on the evolution of inclusion and microstructure in Ti–Zr deoxidized steel were studied by utilizing the Thermecmaster-Z hot simulation test machine, automatic scanning electron microscope equipped with energy-dispersive spectrometer, and electron backscattered diffraction. The results indicated that hot deformation amount has no significant effect on the number density of oxide, but the MnS that precipitated on the Ti–Zr oxide surface undergoes extension and breakage, resulting in the changes in oxide aspect ratio. Moreover, the fracture of nitride mainly occurs in the sample with the second pass deformation amount of 42.9% and 71.4%, and the degree of fragmentation of nitride is more serious with the deformation amount increasing. During the hot compression, sulfide undergoes breakage and extension, and with the second pass deformation amount increasing, the breakage and extension of sulfide present a periodic change. Finally, with the increase in hot compression amount, the ferrite types in microstructure change from acicular ferrite and bainitic ferrite to polygonal ferrite, and the ferrite grain size is refined. When the total deformation amount increases from 30% to 80%, the ferrite grain sizes of grain boundary with the misorientation of 4° and 15° decrease from 4.14 and 5.67 μm to 3.47 and 4.40 μm, respectively. However, when the total deformation amount increases to 80%, the harmful ferrite/pearlite banded structure appears in the microstructure. Refining ferrite grain size and avoiding harmful microstructure are the key for the optimization of hot compression process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. S. Kitamura, ISIJ Int. 51 (2011) 1943.

    Article  Google Scholar 

  2. K. Yamamoto, H. Yamamura, Y. Suwa, ISIJ Int. 51 (2011) 1987–1994.

    Article  Google Scholar 

  3. H. Tervo, A. Kaijalainen, T. Pikkarainen, S. Mehtomen, D. Porteret, Mater. Sci. Eng. A 698 (2017) 184–193.

    Article  Google Scholar 

  4. S.C. Zhang, J.T. Yu, H.B. Li, Z.H. Jiang, Y.F. Geng, H. Feng, B.B. Zhang, H.C. Zhu, J. Mater. Sci. Technol. 102 (2022) 105–114.

    Article  Google Scholar 

  5. Z.Y. Wang, Z.G. Xing, H.D. Wang, D.B. Shan, Y.F. Huang, Z.H. Xu, F.K. Xie, Int. J. Fatigue 155 (2022) 106594.

    Article  Google Scholar 

  6. G. Krauss, Metall. Mater. Trans. B 34 (2003) 781–792.

    Article  Google Scholar 

  7. D. Bhattacharya, T.K. Roy, V.V. Mahashabde, J. Failure Anal. Prev. 16 (2016) 95–103.

    Article  Google Scholar 

  8. M.S. Joo, D.W. Suh, H.K.D.H. Bhadeshia, ISIJ Int. 53 (2013) 1305–1314.

    Article  Google Scholar 

  9. V.H.C. de Albuquerque, C.C. Silva, C.R.O. Moura, W.M. Aguiar, J.P. Farias, Mater. Des. 30 (2009) 1068–1074.

    Article  Google Scholar 

  10. K. Hashimoto, T. Fujimatsu, N. Tsunekage, K. Hiraoka, K. Kida, E.C. Santos, Mater. Des. 32 (2011) 1605–1611.

    Article  Google Scholar 

  11. K. Hashimoto, T. Fujimatsu, N. Tsunekage, K. Hiraoka, K. Kida, E. C. Santos, Mater. Des. 32 (2011) 4980–4985.

    Article  Google Scholar 

  12. E. Ervasti, U. Ståhlberg, J. Mater. Process. Technol. 101 (2000) 312–321.

    Article  Google Scholar 

  13. K.B. Gove, J.A. Charles, Met. Technol. 1 (1974) 425–431.

    Article  Google Scholar 

  14. T.M. Banks, T. Gladman, Met. Technol. 6 (1979) 81–94.

    Article  Google Scholar 

  15. F. Vodopivec, M. Gabrovsek, Met. Technol. 7 (1980) 186–191.

    Article  Google Scholar 

  16. S. Ashok, Scripta Metall. 14 (1980) 31–34.

    Article  Google Scholar 

  17. S. Ramalingam, K. Basu, S. Malkin, Mater. Sci. Eng. 29 (1977) 117–121.

    Article  Google Scholar 

  18. K. Miao, M. Nabeel, N. Dogan, S. Sun, Metall. Mater. Trans. B 52 (2021) 3151–3166.

    Article  Google Scholar 

  19. T.J. Baker, K.B. Gave, J.A. Charles, Met. Technol. 3 (1976) 183–193.

    Article  Google Scholar 

  20. L. Luyckx, J.R. Bell, A. McLean, M. Korchynsky, Metall. Trans. 1 (1970) 3341–3350.

    Article  Google Scholar 

  21. F.Y. Huang, Y.H.F. Su, J.C. Kuo, Met. Mater. Int. 24 (2018) 1333–1345.

    Article  Google Scholar 

  22. A. Nordgren, A. Melander, Mater. Sci. Technol. 5 (1989) 940–951.

    Article  Google Scholar 

  23. W. Yang, C.B. Guo, L.F. Zhang, H.T. Ling, C. Li, Metall. Mater. Trans. B 48 (2017) 2717–2730.

    Article  Google Scholar 

  24. L.F. Zhang, C.B. Guo, W. Yang, Y. Ren, H.T. Ling, Metall. Mater. Trans. B 49 (2018) 803–811.

    Article  Google Scholar 

  25. K.P. Wang, M. Jiang, X.H. Wang, W.H. Wan, Y. Wang, Metall. Mater. Trans. B 51 (2020) 95–101.

    Article  Google Scholar 

  26. W. Yang, K.Y. Peng, L.F. Zhang, Q. Ren, J. Mater. Res. Technol. 9 (2020) 15016–15022.

    Article  Google Scholar 

  27. R. Wang, Y.P. Bao, Z.J. Yan, D.Z. Li, Y. Kang, Int. J. Miner. Metall. Mater. 26 (2019) 178–185.

    Article  Google Scholar 

  28. X. Li, Y.P. Bao, M. Wang, Trans. Indian Inst. Met. 71 (2018) 1067–1072.

    Article  Google Scholar 

  29. O.F. Agboola, Acad. J. Sci. Eng. 6 (2009) 68–73.

    Google Scholar 

  30. D.W. Zhao, H.B. Li, C.L. Bao, J. Yang, ISIJ Int. 55 (2015) 2115–2124.

    Article  Google Scholar 

  31. Y.K. Yang, D.P. Zhan, G.X. Qiu, X.M. Li, Z.H. Jiang, H.S. Zhang, J. Mater. Res. Technol. 18 (2022) 5103–5115.

    Article  Google Scholar 

  32. Y.K. Yang, D.P. Zhan, H. Lei, G.X. Qiu, Z.H. Jiang, H.S. Zhang, ISIJ Int. 59 (2019) 1545–1551.

    Article  Google Scholar 

  33. Y.K. Yang, D.P. Zhan, H. Lei, G.X. Qiu, Y.L. Li, Z.H. Jiang, H.S. Zhang, Metall. Mater. Trans. B 50 (2019) 2536–2546.

    Article  Google Scholar 

  34. Y.K. Yang, D.P. Zhan, H. Lei, Y.L. Li, X. Liu, Z.H. Jiang, H.S. Zhang, Metall. Mater. Trans. B 52 (2021) 1839–1853.

    Article  Google Scholar 

  35. N. Matsuoka, M. Terano, T. Ishiguro, E. Abe, N. Yukawa, T. Ishikawa, Y. Ueshima, K. Yamamoto, K. Isobe, Proced. Eng. 81 (2014) 120–125.

    Article  Google Scholar 

  36. H.T. Zhao, E.J. Palmiere, Mater. Charact. 158 (2019) 109990.

    Article  Google Scholar 

  37. H.T. Zhao, E.J. Palmiere, Metall. Mater. Trans. A 48 (2017) 3389–3399.

    Article  Google Scholar 

  38. F.J. Barbaro, P. Krauklis, K.E. Easterling, Mater. Sci. Technol. 5 (1989) 1057–1068.

    Article  Google Scholar 

  39. D. Zhang, Y. Shintaku, S. Suzuki, Y.I. Komizo, Metall. Mater. Trans. A 43 (2012) 447–458.

    Article  Google Scholar 

  40. D. Zhang, H. Terasaki, Y.I. Komizo, Acta Mater. 58 (2010) 1369–1378.

    Article  Google Scholar 

  41. J.S. Liu, J. Yanagimoto, ISIJ Int. 47 (2007) 1188–1194.

    Article  Google Scholar 

  42. L.Y. Lan, W. Zhou, R.D.K. Misra, Mater. Sci. Eng. A 756 (2019) 18–26.

    Article  Google Scholar 

  43. Y.M. Kim, H. Lee, N.J. Kim, Mater. Sci. Eng. A 478 (2008) 361–370.

    Article  Google Scholar 

  44. S.K. Kim, Y.M. Kim, Y.J. Lim, N.J. Kim, Met. Mater. Int. 12 (2006) 131–135.

    Article  Google Scholar 

Download references

Acknowledgements

The present work was financially supported by the National Natural Science Foundation of China (Nos. 52074207 and 51874081) and Key Laboratory of Ecological Metallurgy of Multimetallic Mineral (Northeastern University) of Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-ming Li or Dong-ping Zhan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Yk., Zhu, Jy., Li, Xm. et al. Evolution of inclusion and microstructure in Ti–Zr deoxidized steel during hot compression. J. Iron Steel Res. Int. 30, 1987–1999 (2023). https://doi.org/10.1007/s42243-022-00881-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00881-6

Keywords

Navigation