Skip to main content
Log in

Effect of Mg addition on TiN inclusions in GCr15 bearing steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Compared with the original GCr15 bearing steel, TiN inclusions are greatly reduced by the effect of Mg addition, and many different types of non-metallic Mg-containing inclusions were observed in Mg-treated GCr15 bearing steel which includes MgO, MgS·MnS, MgO–MgS·MnS, MgAl2O4–MgS·MnS, MgO–TiN, MgS·MnS–TiN, and MgO–MgS·MnS–TiN. The inclusion size distribution based on automatic inclusion analysis software shows that the number of inclusion with the size ranging from 1 to 3 μm increases obviously because a large amount of MgO, MgS·MnS, TiN inclusions containing Mg with smaller sizes are massively generated. In situ observation on the experimental steel by high-temperature confocal laser scanning microscopy confirms that MgO can provide nucleation sites for TiN. In addition, the MgS·MnS and MgO–MgS·MnS inclusions can also provide positions for the nucleation of TiN. Thermodynamic calculations indicate that after Mg addition to liquid steel, a large number of fine MgO inclusions are generated in the liquid steel because of the strong reactivity of Mg and O. At the same time, MgS precedes TiN precipitates in the solid–liquid two-phase region; thus, MgO and MgS·MnS can provide sites for TiN nucleation. At last, two possible formation pathways for the above various TiN inclusions containing Mg are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. K. Hashimoto, T. Fujimatsu, N. Tsunekage, K. Hiraoka, K. Kida, E.C. Santos, Mater. Des. 32 (2011) 1605–1611.

    Article  Google Scholar 

  2. T. Liu, M.J. Long, D.F. Chen, H.M. Duan, L.T. Gui, S. Yu, J.S. Cao, H.B. Chen, H.L. Fan, J. Iron Steel Res. Int. 25 (2018) 1043–1053.

    Article  Google Scholar 

  3. T. Sakai, N. Oguma, A. Morikawa, Fatigue Fract. Eng. Mater. Struct. 38 (2015) 1305–1314.

    Article  Google Scholar 

  4. A. Melander, P. Olund, Mater. Sci. Technol. 15 (1999) 555–562.

    Article  Google Scholar 

  5. Q. Chen, E. Shao, D. Zhao, J. Guo, Z. Fan, Wear 147 (1991) 285–294.

    Article  Google Scholar 

  6. T. Uesugi, Tetsu-to-Hagane 28 (1988) 893–899.

    Google Scholar 

  7. T. Uesugi, Trans. ISIJ 26 (1986) 614–620.

    Article  Google Scholar 

  8. J. Xie, D. Zhang, Q. Yang, J. An, Z. Huang, J. Fu, Ironmak. Steelmak. 46 (2019) 564–573.

    Article  Google Scholar 

  9. Z.H. Jiang, C. Wang, W. Gong, H.D. Wang, Ironmak. Steelmak. 42 (2016) 371–377.

    Google Scholar 

  10. T. Zhang, C. Liu, M. Jiang, Metall. Mater. Trans. B 47 (2016) 2253–2262.

    Article  Google Scholar 

  11. X. Zou, D. Zhao, J. Sun, C. Wang, H. Matsuura, Metall. Mater. Trans. B 49 (2018) 481–489.

    Article  Google Scholar 

  12. H. Lou, C. Wang, B. Wang, Z. Wang, R.D.K. Misra, ISIJ Int. 59 (2019) 312–318.

    Article  Google Scholar 

  13. W. Ma, Y. Bao, M. Wang, L. Zhao, ISIJ Int. 54 (2014) 536–542.

    Article  Google Scholar 

  14. C. Lin, Y. Pan, W. Hwang, Y. Fang, Y. Su, G. Lin, Y. Wu, Ironmak. Steelmak. 46 (2019) 176–183.

    Article  Google Scholar 

  15. H. Wang, J. Li, C.B. Shi, J. Li, Ironmak. Steelmak. 44 (2017) 128–133.

    Article  Google Scholar 

  16. H.S. Kim, C. Chang, H. Lee, Scripta Mater. 53 (2005) 1253–1258.

    Article  Google Scholar 

  17. L. Xu, J. Yang, R. Wang, Y. Wang, W. Wang, Metall. Mater. Trans. A 47 (2016) 3354–3364.

    Article  Google Scholar 

  18. F. Chai, C.F. Yang, H. Su, Y.Q. Zhang, Z. Xu, J. Iron Steel Res. Int. 16 (2009) No. 1, 69–74.

    Article  Google Scholar 

  19. Z. Wu, W. Zheng, G. Li, H. Matsuura, F. Tsukihashi, Metall. Mater. Trans. B 46 (2015) 1226–1241.

    Article  Google Scholar 

  20. X.B. Li, Y. Min, Z. Yu, C.J. Liu, M.F. Jiang, J. Iron Steel Res. Int. 23 (2016) 415–421.

    Article  Google Scholar 

  21. H.J Duan, Y. Zhang, Y. Ren, L.F. Zhang, J. Iron Steel Res. Int. 26 (2019) 962–972.

    Article  Google Scholar 

  22. Q. Tian, G.C. Wang, Y. Zhao, J. Li, Q. Wang, Metall. Mater. Trans. B 49 (2018) 1149–1164.

    Article  Google Scholar 

  23. H.Y. Liu, H.L. Wang, L. Li, J.Q. Zheng, Y.H. Li, X.Y. Zeng, Ironmak. Steelmak. 38 (2011) 53–58.

    Article  Google Scholar 

  24. W. Ma, Y. Bao, L. Zhao, M. Wang, Int. J. Miner. Metall. Mater. 21 (2014) 234–239.

    Article  Google Scholar 

  25. J. Li, W. Zhang, ISIJ Int. 29 (1989) 158–164.

    Article  Google Scholar 

  26. M. Lee, J.H. Park, Metall. Mater. Trans. B 49 (2018) 877–893.

    Article  Google Scholar 

  27. Y. Liu, L.F. Zhang, H.J. Duan, Metall. Mater. Trans. A 47 (2016) 3015–3025.

    Article  Google Scholar 

  28. P. Chen, C. Zhu, G. Li, Y. Dong, Z. Zhang, ISIJ Int. 57 (2017) 1019–1028.

    Article  Google Scholar 

  29. X.G. Huang, Iron and steel metallurgy principle, 4th ed., Metallurgical Industry Press, Beijing, China, 2016.

  30. J. Yang, K. Okumura, M. Kuwabara, M. Sano, ISIJ Int. 42 (2002) 685–693.

    Article  Google Scholar 

  31. J.H. Park, S.B. Lee, H.R. Gaye, Metall. Mater. Trans. B 39 (2008) 853–861.

    Article  Google Scholar 

  32. A. Costa e Silva, Calphad 68 (2020) 101720.

  33. L. Yang, G. Cheng, S. Li, M. Zhao, G. Feng, ISIJ Int. 55 (2015) 1693–1698.

    Article  Google Scholar 

  34. S. Luo, B.Y. Wang, Z.H. Wang, D.B. Jiang, W. Wang, M.Y. Zhu, ISIJ Int. 57 (2017) 2000–2009.

    Article  Google Scholar 

  35. D. Chen, X.L. Ma, Y.M. Wang, L. Chen, Phys. Rev. B 69 (2004) 155401–155406.

    Article  Google Scholar 

  36. C.C. Jiang, T. Goto, T. Hirai, J. Alloy. Compd. 190 (1993) 197–200.

    Article  Google Scholar 

  37. R. Zhang, C. Kim, B. Delley, C. Stampfl, A. Soon, Phys. Chem. Chem. Phys. 14 (2012) 2462–2467.

    Article  Google Scholar 

  38. L. Hultman, J.E. Sundgren, J. Mater. Res. 4 (1989) 1266–1271.

    Article  Google Scholar 

  39. F. Magnus, A.S. Ingason, S. Olafsson, J.T. Gudmundsson, Thin Solid Films 519 (2011) 5861–5867.

    Article  Google Scholar 

  40. J. Fu, Y. Yu, A. Wang, B. Chen, J. Mater. Sci. Technol. 14 (1998) 53–56.

    Article  Google Scholar 

  41. B.L. Bramfitt, Metall. Trans. 1 (1970) 1987–1995.

    Article  Google Scholar 

  42. J. Yang, T. Yamasaki, M. Kuwabara, ISIJ Int. 47 (2007) 699–708.

    Article  Google Scholar 

  43. H. Ohta, H. Suito, ISIJ Int. 46 (2006) 480–489.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (Grant No. 51874170) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-cheng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, L., Wang, Gc., Xiao, Yy. et al. Effect of Mg addition on TiN inclusions in GCr15 bearing steel. J. Iron Steel Res. Int. 29, 925–938 (2022). https://doi.org/10.1007/s42243-022-00760-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00760-0

Keywords

Navigation