Skip to main content
Log in

Precipitation Behaviors of TiN Inclusion in GCr15 Bearing Steel Billet

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

There are many types of non-metallic TiN-based inclusions observed in GCr15 bearing steel, including single-particle TiN, multi-particle polymerized TiN, and complex inclusions like TiN-MnS, TiN-MgO-MgAl2O4 (TiN-MgO-MA), and TiN-MgAl2O4-MnS (TiN-MA-MnS). Thermodynamic calculations suggest that single-particle TiN precipitates dominate the mushy zone of GCr15 bearing steel. Kinetic calculations regarding TiN growth suggest that the final size of the single-particle TiN ranges between 1 and 6 μm in the initial concentration range of [pct Ti] = 0.0060 to 0.0079 and [pct N] = 0.0049 to 0.0070, at 1620 to 1640 K and a local cooling rate of 0.5 to 10 K/s. The multi-particle polymerized TiN are formed by single TiN particles in three stages: single-particle TiN inclusions approach each other drawn by the cavity bridge force (CBF), local active angles consolidate, and neck region sintering occurs. Based on the thermodynamic calculations of TiN, MnS, and MgO precipitation, the formation behaviors of complex inclusions of TiN-MnS, TiN-MgO-MA, and TiN-MA-MnS were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. [1] T. Uesugi: Trans. ISIJ, 1986, vol. 26, pp. 614–20.

    Article  Google Scholar 

  2. K. Tsubota and I. Fukumoto: IISC 6th Int. Iron and Steel Congress, 1990, vol. 3, pp. 637–43.

  3. [3] T. Uesugi: Trans. ISIJ, 1988, vol. 28, pp. 893–99.

    Article  Google Scholar 

  4. [4] T. Uesugi: Tetsu-To-Hagane, 1988, vol. 74, pp. 1889–94.

    Article  Google Scholar 

  5. T. Lund and J. Akesson: Effect of Steel Manufacturing Processes on the Quality of Bearing Steel, ASTM Int. STP987, 1988, pp. 308–30.

  6. M. Stone: Iron and Steel Engineer Year Book, Pittsburgh Association of Iron and Engineer Publisher, Pittsburgh, 1953, pp. 115–28.

    Google Scholar 

  7. [7] M. Zhou, and H. Yu, Int. J. Miner. Metall. Mater., 2012, vol. 19, pp. 805–11.

    Article  Google Scholar 

  8. [8] J. Fu, J. Zhu, L. Di, F. Tong, D. Liu, and Y. Wang, Acta. Metall. Sin., 2000, vol. 36, pp. 801–04.

    Google Scholar 

  9. [9] S. Jonsson: Metall. Mater. Trans. B, 1998, vol. 29, pp. 371–84.

    Article  Google Scholar 

  10. [10] J. Jong, W. Kim, C. Lee, and J.J. Pak: ISIJ Int., 2010, vol. 50, pp. 1373–79.

    Article  Google Scholar 

  11. [11] J. Pak, Y. Jeong, and I. Hong: ISIJ Int., 2005, vol. 45, pp. 1106–11.

    Article  Google Scholar 

  12. [12] D. Zhou, J. Fu, and X. Chen: J. Mater. Sci. Technol., 2003,vol. 19, pp. 184–86.

    Article  Google Scholar 

  13. [13] X. Yang, G. Cheng, and M. Wang: J. Univ. Sci.Technol. Beijing, 2003, vol. 10, pp. 24–26.

    Google Scholar 

  14. [14] Y. Liu, L. Zhang, and H. Duan, Metall. Mater. Trans. A, 2016, vol. 47A, pp. 3015–25.

    Article  Google Scholar 

  15. [15] K. Dirk, and A. Garbers-Craig: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 1514–32.

    Google Scholar 

  16. [16] K. Sasai: ISIJ Int., 2016, vol. 56, pp. 1013–22.

    Article  Google Scholar 

  17. [17] K. Sasai: ISIJ Int., 2014, vol. 54, pp. 2780–89.

    Article  Google Scholar 

  18. [18] X. Huang: Iron and Steel Metallurgy Principle, 4th ed., Metallurgical Industry Press, Beijing, 2014, pp. 181.

    Google Scholar 

  19. [19] G.M. Gulliver: Metallic Alloys, Griffen, London, 1922.

    Google Scholar 

  20. [20] E. Scheil: Zeitschrift Metallkunde, 1942, vol. 34, pp. 70–72.

    Google Scholar 

  21. [21] J. Chen: Manual of Chart and Data in Common Use of Steel Making, 2nd ed., The Metallurgical Industry Press, Beijing, 2010, pp. 510.

    Google Scholar 

  22. [22] P. Chen, C. Zhu, and G. Li: ISIJ Int., 2017, vol. 57, pp. 1019-28.

    Article  Google Scholar 

  23. [23] E. Gao, G. Zou, W. Wang and F. Ma, and X. Luo: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 1014-23.

    Article  Google Scholar 

  24. [24] W. Ma, Y. Bao, and L. Zhao: Int. J. Mine. Metall. Mater., 2014, vol. 21, pp. 234-39.

    Article  Google Scholar 

  25. [25] H. Yin, H. Shibata, and T. Emi: ISIJ Int., 1997, vol. 37, pp. 936-45.

    Article  Google Scholar 

  26. [26] H. Yin, H. Shibata, and T. Emi: ISIJ Int., 1997, vol. 37, pp. 946-55.

    Article  Google Scholar 

  27. [27] H. Shibata, H. Yin, and S. Yoshinaga: ISIJ Int., 1998, vol. 38, pp. 149-56.

    Article  Google Scholar 

  28. [28] J. Chen: Manual of Chart and Data in Common Use of Steel Making, 2nd ed., The Metallurgical Industry Press, Beijing, 2010, pp. 421.

    Google Scholar 

  29. [29] D. Bratko, R. A. Curtis, H. W. Blanch, and J. M. Prausnitz: J. Chem.Phys., 2001, vol. 115, pp. 3873-77.

    Article  Google Scholar 

  30. [30] S. Singh, J. Houston, F. van Swol, and C. J. Brinker: Nature, 2006, vol. 442, pp. 526.

    Article  Google Scholar 

  31. [31] N. Ishida, M. Sakamoto, M. Miyahara, and K. Higashitani: Langmuir, 2000, vol. 16, pp. 5681-87.

    Article  Google Scholar 

  32. [32] J.L. Parker, P.M.Claesson, and P. Attard: J. Phys. Chem., 1994, vol. 98, pp. 8468-80.

    Article  Google Scholar 

  33. [33] A. Carambassis, L. C. Jonker, P. Attard, and M. W. Rutland: Phys.Rev. Lett., 1998, vol. 80, pp. 5357-60.

    Article  Google Scholar 

  34. [34] R. Podgornik: J. Chem. Phys., 1989, vol. 91, pp. 5840-49.

    Article  Google Scholar 

  35. [35] M. Kiviö, and L. Holappa: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 233–40.

    Article  Google Scholar 

  36. D.R. Poirier, H. Yin, and M. Suzuk, T. Emi.: ISIJ Int., 1998, vol. 38, pp. 229–38.

    Article  Google Scholar 

  37. [37] D. Shangguan, S. Ahuja and D. M. Stefanescu: Metall. Mater. Trans. B, 1992, vol. 23A, pp. 669-80.

    Article  Google Scholar 

  38. [38] K. Wu: Principles of Metallurgical Transport, 1th ed., Metallurgical Industry Press, Beijing, 2011, pp. 7.

    Google Scholar 

  39. [39] Y. Lu, S. Song, X. Shen, Z. Song, L. Wu, G. Wang, and S. Dai: Appl. Phy. A, 2014, 117, pp. 1933-40.

    Article  Google Scholar 

  40. [40] W. D. Kingery: J. Appl. Phys., 1959, vol. 30, pp. 301-06.

    Article  Google Scholar 

  41. J.L. Johnson and R. German: in Advances in Powder Metallurgy, vol. 4, A. Lawley and A. Swanson, eds., Metal Powder Industry Federation, Princeton, 1993, pp. 201–13.

  42. J.L. Johnson, K. Hens, and R. German: In Tungsten and Refractory Metals-1994, 1995, Metal Powder Ind. Federation, Princeton, pp. 246–52.

  43. [43] J.L. Johnson, and R. German: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 441-50.

    Article  Google Scholar 

  44. [44] J.L. Johnson, and R. German: Metall. Mater. Trans. B, 1996, vol. 27, pp. 901-09.

    Article  Google Scholar 

  45. [45] P. Yan, M. Guo, and B. Blanpain: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 903-13.

    Article  Google Scholar 

  46. [46] G.V. Pervushin, and H. Suito: ISIJ Int., 2001, vol. 41, pp. 748-56.

    Article  Google Scholar 

  47. [47] D. Turnbull, and B. Vonnegut: Ind. Eng. Chem., 1952, vol. 44, pp 1292-98.

    Article  Google Scholar 

  48. [48] B.L. Bramfitt: Metall. Trans. 1970, vol. 1, pp. 1987-95.

    Article  Google Scholar 

  49. [49] J. Park: Calphad, 2011, vol. 35, pp.455-62.

    Article  Google Scholar 

  50. [50] H. Fujimura, S. Tsuge, Y. Komizo, and T. Nishizawa: Tetsu-to-Hagane, 2001, vol. 87, pp. 707-12.

    Article  Google Scholar 

  51. [51] S. Zhang, N. Hattori, M. Enomoto, and T. Tarui: ISIJ Int.,1996, vol. 36, pp. 1301-09.

    Article  Google Scholar 

  52. [52] R. Kohlhaas, P. Dunner, and P.N. Schmitz: Z Angew Physik, 1967, vol. 23, pp. 245-49.

    Google Scholar 

  53. [53] B. Morosin: Phys. Rev. B, 1970, vol. 1, pp. 236-43.

    Article  Google Scholar 

  54. [54] S. Yang, Q. Wang, L. Zhang, J. Li, and K. Peaslee: Metall. Mater.Trans. B, 2012, vol. 43B, pp. 731-50

    Article  Google Scholar 

  55. [55] S. Kimura, K. Nakajima, and S. Mizoguchi: Metall. Mater.Trans. B, 2001, vol. 32B, pp. 79-85.

    Article  Google Scholar 

  56. [56] X. Huang: Iron and Steel Metallurgy Principle, 4th ed., Metallurgical Industry Press, Beijing, 2014, pp. 594.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully express their appreciation to Natural Science Foundation of China (51634004), Natural Science Foundation of Liaoning Province (2015020181), and Natural Science Foundation of China (51474125) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guocheng Wang.

Additional information

Manuscript submitted August 5, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Q., Wang, G., Zhao, Y. et al. Precipitation Behaviors of TiN Inclusion in GCr15 Bearing Steel Billet. Metall Mater Trans B 49, 1149–1164 (2018). https://doi.org/10.1007/s11663-018-1230-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1230-y

Keywords

Navigation