Skip to main content
Log in

3D Biocompatible Polyester Blend Scaffolds Containing Degradable Calcium Citrate for Bone Tissue Engineering

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

In this study, a novel porous 3D composite scaffold based on the biodegradable Poly(ε-caprolactone) (PCL), Polylactide Acid (PLA) and Calcium Citrate (CC) was developed via polymer blends and thermal-induced phase separation. The chemical structure, crystalline structure and micromorphology as well as mechanical strength of the scaffolds were characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Scanning Electron Microscope (SEM) and tensile tests. The results show that the obtained composite scaffold present a suitable bone-like porous structure and sufficient mechanical strength. Furthermore, the release of calcium ions in Simulated Body Fluid (SBF) indicates that the composite material can provide a stable calcium-ion environment and maintain a constant pH value during the soaking process. The cell proliferation results from CCK-8 and light microscopy show that MG63 cells exhibit excellent adhesion and proliferation on the stent. At the same time, animal implantation histology confirms that the composite scaffolds have good biocompatibility in vivo. The scaffold material has greatly potential application value in the field of bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. De Witte, T. M., Fratila-Apachitei, L. E., Zadpoor, A. A., & Peppas, N. A. (2018). Bone tissue engineering via growth factor delivery: From scaffolds to complex matrices. Regenerative Biomaterials, 5, 197–211.

    Article  Google Scholar 

  2. Lai, Y. X., Cao, H. J., Wang, X. L., Chen, S. K., Zhang, M., Wang, N., Yao, Z. H., Dai, Y., Xie, X. H., Zhang, P., Yao, X. S., & Qin, L. (2018). Porous composite scaffold incorporating osteogenic phytomolecule icariin for promoting skeletal regeneration in challenging osteonecrotic bone in rabbits. Biomaterials, 153, 1–13.

    Article  Google Scholar 

  3. Cui, L. G., Zhang, N., Cui, W. W., Zhang, P. B., & Chen, X. S. (2015). A novel nano/micro-fibrous scaffold by melt-spinning method for bone tissue engineering. Journal of Bionic Engineering, 12, 117–128.

    Article  Google Scholar 

  4. Han, J., Wu, L. P., Liu, X. B., Hou, J., Zhao, L. L., Chen, J. Y., Zhao, D. H., & Xiang, H. (2017). Biodegradation and biocompatibility of haloarchaea-produced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymers. Biomaterials, 139, 172–186.

    Article  Google Scholar 

  5. Strehin, I., Nahas, Z., Arora, K., Nguyen, T., & Elisseeff, J. (2010). A versatile pH sensitive chondroitin sulfate–PEG tissue adhesive and hydrogel. Biomaterials, 31, 2788–2797.

    Article  Google Scholar 

  6. Salerno, A., Di Maio, E., Iannace, S., & Netti, P. A. (2012). Tailoring the pore structure of PCL scaffolds for tissue engineering prepared via gas foaming of multi-phase blends. Journal of Porous Materials, 19, 181–188.

    Article  Google Scholar 

  7. Patrício, T., & Bártolo, P. (2013). Thermal stability of PCL/PLA blends produced by physical blending process. Procedia Engineering, 59, 292–297.

    Article  Google Scholar 

  8. Kelnar, I., Kratochvíl, J., & Kaprálková, L. (2015). Crystallization and thermal properties of melt-drawn PCL/PLA microfibrillar composites. Journal of Thermal Analysis and Calorimetry, 124, 799–805.

    Article  Google Scholar 

  9. Hidalgo Pitaluga, L., Trevelin Souza, M., Dutra Zanotto, E., Santocildes Romero, M. E., & Hatton, P. V. (2018). Electrospun f18 bioactive glass/PCL-poly (epsilon-caprolactone)-membrane for guided tissue regeneration. Materials (Basel), 11, 400–413.

    Article  Google Scholar 

  10. Malikmammadov, E., Tanir, T. E., Kiziltay, A., Hasirci, V., & Hasirci, N. (2018). PCL and PCL-based materials in biomedical applications. Journal of Biomaterials Science-Polymer Edition, 29, 863–893.

    Article  Google Scholar 

  11. Nyberg, E., Rindone, A., Dorafshar, A., & Grayson, W. L. (2017). Comparison of 3D-printed poly-ɛ-caprolactone scaffolds functionalized with tricalcium phosphate, hydroxyapatite, bio-oss, or decellularized bone matrix. Tissue Engineering Part A, 23, 503–514.

    Article  Google Scholar 

  12. Xu, W. H., Shen, R. Z., Yan, Y. R., & Gao, J. (2017). Preparation and characterization of electrospun alginate/PLA nanofibers as tissue engineering material by emulsion eletrospinning. Journal of the Mechanical Behavior of Biomedical Materials, 65, 428–438.

    Article  Google Scholar 

  13. Tyler, B., Gullotti, D., Mangraviti, A., Utsuki, T., & Brem, H. (2016). Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Advanced Drug Delivery Reviews, 107, 163–175.

    Article  Google Scholar 

  14. Sha, L. L., Chen, Z. F., Chen, Z., Zhang, A. L., & Yang, Z. G. (2016). Polylactic acid based nanocomposites: Promising safe and biodegradable materials in biomedical field. International Journal of Polymer Science, 2016, 1–11.

    Article  Google Scholar 

  15. Tanakaa, T., Eguchia, S., Saitoha, H., Taniguchia, M., & Lloydb, D. R. (2008). Microporous foams of polymer blends of poly(L-lactic acid) and poly(ε-caprolactone). Desalination, 234, 175–183.

    Article  Google Scholar 

  16. Kratochvíl, J., & Kelnar, I. (2016). Non-isothermal crystallization kinetics in melt-drawn PCL/PLA microfibrillar composites. Journal of Thermal Analysis and Calorimetry, 124, 799–805.

    Article  Google Scholar 

  17. Patrício, T., Domingos, M., Gloria, A., D’Amora, U., Coelho, J. F., & Bártolo, P. J. (2014). Fabrication and characterisation of PCL and PCL/PLA scaffolds for tissue engineering. Rapid Prototyping Journal, 20, 145–156.

    Article  Google Scholar 

  18. Yao, Q. Q., Cosme, J. G. L., Xu, T., Miszuk, J. M., Picciani, P. H. S., Fong, H., & Sun, H. L. (2016). Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Biomaterials, 115, 115–127.

    Article  Google Scholar 

  19. Maeno, S., Niki, Y., Matsumoto, H., Morioka, H., Yatabe, T., Funayama, A., Toyama, Y., Taguchi, T., & Tanaka, J. (2005). The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials, 26, 4847–4855.

    Article  Google Scholar 

  20. Shao, C. Y., Zhao, R. B., Jiang, S. Q., Yao, S. S., Wu, Z. F., Jin, B., Yang, Y. L., Pan, H. H., & Tang, R. K. (2018). Citrate improves collagen mineralization via interface wetting: A physicochemical understanding of biomineralization control. Advanced Materials, 30, 7.

    Google Scholar 

  21. Tang, J. J., Guo, J. S., Li, Z., Yang, C., Xie, D. H., Chen, J., Li, S. F., Li, S. L., Kim, G. B., Bai, X. C., Zhang, Z. M., & Yang, J. (2015). A fast degradable citrate-based bone scaffold promotes spinal fusion. Journal of Materials Chemistry B, 3, 5569–5576.

    Article  Google Scholar 

  22. Li, J. F., Liu, Y. Q., Gao, Y., Zhong, L. Z., Zou, Q., & Lai, X. F. (2016). Preparation and properties of calcium citrate nanosheets for bone graft substitute. Bioengineered Bugs, 7, 376–381.

    Article  Google Scholar 

  23. Gao, Y., Li, J. F., Liu, Y. Q., Zhong, L. Z., Shu, C. Z., Yue, B., & Zhang, W. T. (2017). Shape-controlled porous carbon from calcium citrate precursor and their intriguing application in lithium-ion batteries. Ionics, 23, 2301–2310.

    Article  Google Scholar 

  24. Nampoothiri, K. M., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101, 8493–8501.

    Article  Google Scholar 

  25. Ni, Y. N., & Wu, Y. L. (1997). Simultaneous determination of mixtures of metal ions by complexometric titration and multivariate calibration. Analytica Chimica Acta, 354, 233–240.

    Article  Google Scholar 

  26. Kokubo, T., & Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27, 2907–2915.

    Article  Google Scholar 

  27. Scaglione, S., Ceseracciu, L., Aiello, M., Coluccino, L., Ferrazzo, F., Giannoni, P., & Quarto, R. (2014). A novel scaffold geometry for chondral applications: Theoretical model and in vivo validation. Biotechnology and Bioengineering, 111, 2107–2119.

    Article  Google Scholar 

  28. Karageorgiou, V., & Kaplan, D. (2005). Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 26, 5474–5491.

    Article  Google Scholar 

  29. Cavo, M., & Scaglione, S. (2016). Scaffold microstructure effects on functional and mechanical performance: Integration of theoretical and experimental approaches for bone tissue engineering applications. Materials Science & Engineering C-Materials for Biological Applications, 68, 872–879.

    Article  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the National Natural Science Foundation of China (NO. 41673109), Sichuan Science and Technology Program (2021YFH0098), and Key Project of Sichuan Vanadium and Titanium Industry Development Research Center (2018VTCY-Z-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Wang or Junfeng Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 318 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Wang, L., Luo, K. et al. 3D Biocompatible Polyester Blend Scaffolds Containing Degradable Calcium Citrate for Bone Tissue Engineering. J Bionic Eng 19, 497–506 (2022). https://doi.org/10.1007/s42235-021-00134-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-021-00134-4

Keywords

Navigation