Skip to main content
Log in

Tailoring the pore structure of PCL scaffolds for tissue engineering prepared via gas foaming of multi-phase blends

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The aim of this study was the design of poly(ε-caprolactone) (PCL) scaffolds characterized by well controlled pore structures obtained by gas foaming of multi-phase blends of PCL and thermoplastic gelatin (TG). Co-continuous blends made of PCL and TG were prepared by melt mixing and, subsequently gas foamed in an autoclave to induce the formation of the porous network. A mixture of N2 and CO2 was used as blowing agent and the foaming process performed at temperature higher than PCL melting, in the range 70–110 °C. The foams were finally soaked in water at 37 °C to selectively extract the TG and achieve the final pore structure. The results of this study demonstrated that the proposed approach allowed to tailor the micro-structural properties of PCL scaffolds for tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F. Causa, P.A. Netti, L. Ambrosio, Biomaterials 28, 5093 (2007)

    Article  CAS  Google Scholar 

  2. V. Liu.Tsang, S.N. Bhatia, Adv. Drug Deliv. Rev. 56, 1635 (2004)

    Article  CAS  Google Scholar 

  3. E. Chevalier, D. Chulia, C. Pouget, M. Viana, J. Pharm. Sci. 97, 1135 (2008)

    Article  CAS  Google Scholar 

  4. S. Yang, K. Leong, Z. Du, C. Chua, Tissue Eng. 7, 679 (2001)

    Article  CAS  Google Scholar 

  5. S.J. Hollister, Nat. Mater. 4, 518 (2005)

    Article  CAS  Google Scholar 

  6. H. Sung, C. Meredith, C. Johnson, Z.S. Galis, Biomaterials 25, 5735 (2004)

    Article  CAS  Google Scholar 

  7. V. Karageorgiou, D. Kaplan, Biomaterials 26, 5474 (2005)

    Article  CAS  Google Scholar 

  8. T.G. van Tienen, R.G.J.C. Heijkants, P. Buma, J.H. de Groot, A.J. Pennings, R.P.H. Veth, Biomaterials 23, 1731 (2002)

    Article  Google Scholar 

  9. E. Pamula, L. Bacakova, E. Filova, J. Buczynska, P. Dobrzynski, L. Noskova, L. Grausova, J. Mater. Sci. Mater. Med. 19, 425 (2008)

    Article  CAS  Google Scholar 

  10. A. Salerno, D. Guarnieri, M. Iannone, S. Zeppetelli, E. Di Maio, S. Iannace, P.A. Netti, Acta Biomater. 5, 1082 (2009)

    Article  CAS  Google Scholar 

  11. L.E. Freed, G. Vunjak-Novakovic, R.J. Biron, D.B. Eagles, D.C. Lesnoy, S.K. Barlow, R. Langer, Nat. Biotech. 12, 689 (1994)

    Article  CAS  Google Scholar 

  12. A.J. Marshall, A.C. Irvin, T. Barker, H.E. Sage, K.D. Hauch, B.D. Ratner, Polym. Prepr. 45, 100 (2004)

    CAS  Google Scholar 

  13. S.H. Oh, I.K. Park, J.M. Kim, J.H. Lee, Biomaterials 28, 1664 (2007)

    Article  CAS  Google Scholar 

  14. C.E. Petrie Aronin, K.W. Sadik, A.L. Lay, D.B. Rion, S.S. Tholpady, R.C. Ogle, E.A. Botchwey, J. Biomed. Mater. Res. Part A, 89, 632 (2009)

    Google Scholar 

  15. M.H. Sheridan, L.D. Shea, M.C. Peters, D.J. Mooney, J. Contr. Rel. 64, 91 (2000)

    Article  CAS  Google Scholar 

  16. H. Tai, M.L. Mather, D. Howard, W. Wang, L.J. White, J.A. Crowe, S.P. Morgan, A. Chandra, D.J. Williams, S.M. Howdle, K.M. Shakesheff, Eur. Cells Mater. 14, 64 (2007)

    CAS  Google Scholar 

  17. A. Léonard, C. Calberg, G. Kerckhofs, M. Wevers, R. Jérôme, J. Pirard, A. Germain, S. Blacher, J. Porous. Mater. 15, 397 (2008)

    Article  Google Scholar 

  18. L.D. Harris, B. Kim, D.J. Mooney, J. Biomed. Mater. Res. 42, 396 (1998)

    Article  CAS  Google Scholar 

  19. A. Salerno, M. Oliviero, E. Di Maio, S. Iannace, Int. Polym. Proc. 5, 480 (2007)

    Google Scholar 

  20. D. Pankajakshan, L.P. Philipose, M. Palakkal, K. Krishnan, L.K. Krishnan, J. Biomed. Mater. Res. Part B: Appl. Biomater. 87B, 570 (2008)

  21. L. Ghasemi-Mobarakeh, M.P. Prabhakaran, M. Morshed, M. Nasr-Esfahani, S. Ramakrishn, Biomaterials 29, 4532 (2008)

    Article  CAS  Google Scholar 

  22. A. Salerno, M. Oliviero, E. Di Maio, S. Iannace, P.A. Netti, J. Mater. Sci. Mater. Med. 20, 2043 (2009)

    Article  CAS  Google Scholar 

  23. P. Yilgor, R.A. Sousa, R.L. Reis, N. Hasirci, V. Hasirci, Macromol. Symp. 269, 92 (2008)

    Article  CAS  Google Scholar 

  24. S. Park, G. Kim, Y.G. Jeon, Y. Koh, W. Kim, J. Mater. Sci. Mater. Med. 0, 229 (2009)

    Article  Google Scholar 

  25. Q. Huang, J.C.H. Goh, D.W. Hutmacher, E.H. Lee, Tissue Eng. 8, 469 (2002)

    Article  CAS  Google Scholar 

  26. W. Zhai, H. Wang, J. Yu, J. Dong, J. He, J. Polym. Sci. Part B Polym. Phys. 46, 1641 (2008)

    Article  CAS  Google Scholar 

  27. T.B.F. Woodfield, J. Malda, J. de Wijn, F. Péters, J. Riesle, C.A. van Blitterswijk, Biomaterials 25, 4149 (2004)

    Article  CAS  Google Scholar 

  28. A. Salerno, E. Di Maio, S. Iannace, P.A. Netti, J. Cell. Plast. 45, 109 (2009)

    Article  Google Scholar 

  29. Q. Liu, G. Subhash, X. Gao, J. Porous. Mater. 12, 233 (2005)

    Article  CAS  Google Scholar 

  30. M. Lebourg, R.S. Serra, J.M. Estellés, F.H. Sánchez, J.L.G. Ribelles, J.S. Antón, J. Mater. Sci. Mater. Med. 19, 2047 (2008)

    Article  CAS  Google Scholar 

  31. D. Yao, A. Smith, P. Nagarajan, A. Vasquez, L. Dang, G.R. Chaudhry, J. Biomed. Mater. Res. Part B Appl. Biomater. 77B, 287 (2006)

    Article  CAS  Google Scholar 

  32. A. Salerno, D. Guarnieri, M. Iannone, S. Zeppetelli, P.A. Netti, Tissue Eng. 16, 2661 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Daniela Guarnieri, Maria Iannone and Stefania Zeppetelli for theirs contribute to the biological characterization of the scaffolds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Salerno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salerno, A., Di Maio, E., Iannace, S. et al. Tailoring the pore structure of PCL scaffolds for tissue engineering prepared via gas foaming of multi-phase blends. J Porous Mater 19, 181–188 (2012). https://doi.org/10.1007/s10934-011-9458-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-011-9458-9

Keywords

Navigation