Skip to main content
Log in

Synthesis, Characterization and in-vitro Study of Chitosan/Gelatin/Calcium Phosphate Hybrid Scaffolds Fabricated Via Ion Diffusion Mechanism for Bone Tissue Engineering

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this study, biomimetic scaffolds were designed to investigate calcium phosphate formation via a double diffusion mechanism within a gelatin/chitosan hydrogel in biological pH and temperature. Three types of samples with initial percentages of chitosan (20, 30 and 40 wt. %) were prepared. Diffusion of calcium and phosphate ions through the hydrogel formed a precipitation layer. Samples were freeze dried to form porous scaffolds and soaked in glutaraldehyde to increase their mechanical properties. X-ray diffraction (XRD), Fourier transform infra-red (FTIR) spectroscopy and scanning electron microscopy (SEM) were employed to investigate the microstructure and to characterize the prepared scaffolds. Analysis of precipitation indicated the presence of brushite and hydroxyapatite. The amorphous calcium phosphate phase converted into crystalline hydroxyapatite after immersion in simulated body fluid which mimics the formation of hydroxyapatite in the human body. FTIR results suggested the presence of structural hydroxyl and phosphate bonds in the structure of the prepared scaffolds which could be due to the formation of hydroxyapatite. With increasing amount of chitosan in the composite scaffold, the water up-take ability was increased from 380 to 660 %, yield strength and Young’s modulus slightly decreased and the crystalinity of the precipitated phase increased. Mechanical properties obtained from the samples were in the range of cancellous bone. MTT assay results and alkaline phosphatase activity showed prepared scaffolds had proper biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Langer R, Vacanti JP (1993) Tissue engineering. Sci. (New York NY) 260(5110):920–926

    Article  CAS  Google Scholar 

  2. Francois E, Dorcemus D, Nukavarapu S (2015) 1 - Biomaterials and scaffolds for musculoskeletal tissue engineering. In: Nukavarapu SP, Laurencin JWFT (eds) Regenerative Engineering of Musculoskeletal Tissues and Interfaces. Woodhead Publishing, pp 3–23. doi:10.1016/B978-1-78242-301-0.00001-X

  3. Kavya KC, Jayakumar R, Nair S, Chennazhi KP (2013) Fabrication and characterization of chitosan/gelatin/nSiO2 composite scaffold for bone tissue engineering. Int J Biol Macromol 59:255–263. doi:10.1016/j.ijbiomac.2013.04.023

    Article  CAS  Google Scholar 

  4. Kim H-L, Jung G-Y, Yoon J-H, Han J-S, Park Y-J, Kim D-G, Zhang M, Kim D-J (2015) Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering. Mater Sci Eng C 54:20–25. doi:10.1016/j.msec.2015.04.033

    Article  Google Scholar 

  5. Mosher CZ, Spalazzi JP, Lu HH (2015) Stratified scaffold design for engineering composite tissues. Methods 84:99–102. doi:10.1016/j.ymeth.2015.03.029

    Article  CAS  Google Scholar 

  6. Miron RJ, Bosshardt DD (2016) OsteoMacs: Key players around bone biomaterials. Biomaterials 82:1–19. doi:10.1016/j.biomaterials.2015.12.017

    Article  CAS  Google Scholar 

  7. Lacroix J, Jallot E, Lao J (2014) Gelatin-bioactive glass composites scaffolds with controlled macroporosity. Chem Eng J 256:9–13. doi:10.1016/j.cej.2014.06.022

  8. Martínez A, Blanco MD, Davidenko N, Cameron RE (2015) Tailoring chitosan/collagen scaffolds for tissue engineering: Effect of composition and different crosslinking agents on scaffold properties. Carbohydr Polym 132:606–619. doi:10.1016/j.carbpol.2015.06.084

  9. Nieto-Suárez M, Lazzari M, López-Quintela MA Preparation and characterization of crosslinked Chitosan/Gelatin Scaffolds by ice segregation induced self-assembly. Carbohydrate Polymers. doi:10.1016/j.carbpol.2015.12.064

  10. Siqueira NM, Paiva B, Camassola M, Rosenthal-Kim EQ, Garcia KC, Dos Santos FP, Soares RMD (2015) Gelatin and galactomannan-based scaffolds: Characterization and potential for tissue engineering applications. Carbohydr Polym 133:8–18. doi:10.1016/j.carbpol.2015.06.039

    Article  CAS  Google Scholar 

  11. Chhabra H, Gupta P, Verma PJ, Jadhav S, Bellare JR (2014) Gelatin–PMVE/MA composite scaffold promotes expansion of embryonic stem cells. Mater Sci Eng C 37:184–194. doi:10.1016/j.msec.2013.12.033

    Article  CAS  Google Scholar 

  12. Panzavolta S, Fini M, Nicoletti A, Bracci B, Rubini K, Giardino R, Bigi A (2009) Porous composite scaffolds based on gelatin and partially hydrolyzed α-tricalcium phosphate. Acta Biomater 5(2):636–643. doi:10.1016/j.actbio.2008.08.017

    Article  CAS  Google Scholar 

  13. Park H, Choi B, Nguyen J, Fan J, Shafi S, Klokkevold P, Lee M (2013) Anionic carbohydrate-containing chitosan scaffolds for bone regeneration. Carbohydr Polym 97(2):587–596. doi:10.1016/j.carbpol.2013.05.023

    Article  CAS  Google Scholar 

  14. Przekora A, Palka K, Ginalska G (2016) Biomedical potential of chitosan/HA and chitosan/ β-1,3-glucan/HA biomaterials as scaffolds for bone regeneration — A comparative study. Mater Sci Eng C 58:891–899. doi:10.1016/j.msec.2015.09.046

    Article  CAS  Google Scholar 

  15. Sainitya R, Sriram M, Kalyanaraman V, Dhivya S, Saravanan S, Vairamani M, Sastry TP, Selvamurugan N (2015) Scaffolds containing chitosan/carboxymethyl cellulose/mesoporous wollastonite for bone tissue engineering. Int J Biol Macromol 80:481–488. doi:10.1016/j.ijbiomac.2015.07.016

    Article  CAS  Google Scholar 

  16. Sowjanya JA, Singh J, Mohita T, Sarvanan S, Moorthi A, Srinivasan N, Selvamurugan N (2013) Biocomposite scaffolds containing chitosan/alginate/nano-silica for bone tissue engineering. Colloids Surf B Biointerfaces 109:294–300. doi:10.1016/j.colsurfb.2013.04.006

    Article  CAS  Google Scholar 

  17. Kanimozhi K, Khaleel Basha S, Sugantha Kumari V (2016) Processing and characterization of chitosan/PVA and methylcellulose porous scaffolds for tissue engineering. Mater Sci Eng C 61:484–491. doi:10.1016/j.msec.2015.12.084

    Article  CAS  Google Scholar 

  18. Zhang Y, Chen L, Liu C, Feng X, Wei L, Shao L (2016) Self-assembly chitosan/gelatin composite coating on icariin-modified TiO2 nanotubes for the regulation of osteoblast bioactivity. Mater Des 92:471–479. doi:10.1016/j.matdes.2015.12.023

    Article  CAS  Google Scholar 

  19. Kolmas J, Krukowski S, Laskus A, Jurkitewicz M (2016) Synthetic hydroxyapatite in pharmaceutical applications. Ceram Int 42(2, Part A):2472–2487. doi:10.1016/j.ceramint.2015.10.048

    Article  CAS  Google Scholar 

  20. Oliveira IR, Andrade TL, Araujo KCML, Luz AP, Pandolfelli VC (2016) Hydroxyapatite synthesis and the benefits of its blend with calcium aluminate cement. Ceram Int 42(2, Part A):2542–2549. doi:10.1016/j.ceramint.2015.10.056

    Article  CAS  Google Scholar 

  21. Chao SC, Wang M-J, Pai N-S, Yen S-K (2015) Preparation and characterization of gelatin–hydroxyapatite composite microspheres for hard tissue repair. Mater Sci Eng C 57:113–122. doi:10.1016/j.msec.2015.07.047

    Article  CAS  Google Scholar 

  22. Chen J-P, Chang F-N (2012) Preparation and characterization of hydroxyapatite/gelatin composite membranes for immunoisolation. Appl Surf Sci 262:176–183. doi:10.1016/j.apsusc.2012.04.097

    Article  CAS  Google Scholar 

  23. Cai Q, Feng Q, Liu H, Yang X (2013) Preparation of biomimetic hydroxyapatite by biomineralization and calcination using poly(l-lactide)/gelatin composite fibrous mat as template. Mater Lett 91:275–278. doi:10.1016/j.matlet.2012.09.101

    Article  CAS  Google Scholar 

  24. Deng Y, Wang H, Zhang L, Li Y, Wei S (2013) In situ synthesis and in vitro biocompatibility of needle-like nano-hydroxyapatite in agar–gelatin co-hydrogel. Mater Lett 104:8–12. doi:10.1016/j.matlet.2013.03.145

    Article  CAS  Google Scholar 

  25. Liu X, Smith LA, Hu J, Ma PX (2009) Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering. Biomaterials 30(12):2252–2258. doi:10.1016/j.biomaterials.2008.12.068

    Article  CAS  Google Scholar 

  26. Raz M, Moztarzadeh F, Shokrgozar M, Azami M, Tahriri M (2014) Development of biomimetic gelatin–chitosan/hydroxyapatite nanocomposite via double diffusion method for biomedical applications. Int J Mater Res 105(5):493–501. doi:10.3139/146.111061

    Article  CAS  Google Scholar 

  27. Thein-Han WW, Misra RDK (2009) Biomimetic chitosan–nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater 5(4):1182–1197. doi:10.1016/j.actbio.2008.11.025

    Article  CAS  Google Scholar 

  28. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15):2907–2915. doi:10.1016/j.biomaterials.2006.01.017

    Article  CAS  Google Scholar 

  29. Thein-Han WW, Saikhun J, Pholpramoo C, Misra RDK, Kitiyanant Y (2009) Chitosan–gelatin scaffolds for tissue engineering: Physico-chemical properties and biological response of buffalo embryonic stem cells and transfectant of GFP–buffalo embryonic stem cells. Acta Biomater 5(9):3453–3466. doi:10.1016/j.actbio.2009.05.012

    Article  CAS  Google Scholar 

  30. Kim HW, Knowles JC, Kim HE (2005) Hydroxyapatite and gelatin composite foams processed via novel freeze-drying and crosslinking for use as temporary hard tissue scaffolds. J Biomed Mater Res Part A 72(2):136–145. doi:10.1002/jbm.a.30168

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fathollah Moztarzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raz, M., Moztarzadeh, F. & Kordestani, S.S. Synthesis, Characterization and in-vitro Study of Chitosan/Gelatin/Calcium Phosphate Hybrid Scaffolds Fabricated Via Ion Diffusion Mechanism for Bone Tissue Engineering. Silicon 10, 277–286 (2018). https://doi.org/10.1007/s12633-016-9439-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-016-9439-3

Keywords

Navigation