Skip to main content
Log in

Mutual inhibition of Aspergillus flavus and Auricularia auricula mycelium for the prevention of competing diseases during growth of fungi

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Auricularia auricula is one of the main edible fungi widely cultivated in China. Aspergillus flavus is the most common class of pathogenic bacteria fungi that produces the high toxicity of the aflatoxins, which is one of the fungal diseases of A. auricula. Morphological observation of A. flavus mycelium and A. auricula mycelium in plate confrontation, mutual inhibition of growth at different germination times, and the interaction of A. flavus liquid culture solution and A. flavus volatiles with A. auricula mycelium were used to investigate the mechanism of the interaction between A. flavus and A. auricula mycelium. Mycelium of A. auricula and A. flavus had a mutual inhibitory effect, but A. auricula mycelia had a stronger inhibitory effect on the growth of A. flavus mycelia. The results of the interaction between A. flavus volatiles and A. auricula volatiles were also the same and the inhibition of A. flavus by volatiles from A. auricula mycelium about 11%. After 240 h, the inhibition rate of A. flavus liquid culture solution on A. auricula mycelium reached up to about 20%. Some antimicrobial substances such as small peptides and organic acids produced in the metabolites of A. flavus liquid culture solution were the main reasons of the growth inhibition of A. auricula mycelium. The main inhibitory substances were 2-butanone, 2-butanone dimer, etc. Further study of AFT B1 and AFT B2 revealed that aflatoxins could migrate from the medium to the mycelia and the fruiting body of A. auricula, but the migration rate was basically lower than 10‱. The mycelia of A. auricula had a strong degradation of aflatoxins in the growth process. So, the mechanism of antifungal activity of these substances was studied to provide a theoretical basis for future chemical synthesis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Zhao K, Qian C, Qi L, Li Q, Zhao C, Zhang J, Han G, Xia L, El-Bahy ZM, Gu J, Helal MH, Yan Z, Guo Z, Shi Z (2024) Modified acid polysaccharide derived from Salvia przewalskii with excellent wound healing and enhanced bioactivity. Int J Biol Macromol 263

  2. Zhao K, Wu X, Han G, Sun L, Zheng C, Hou H, Xu BB, El-Bahy ZM, Qian C, Kallel M, Algadi H, Guo Z, Shi Z (2024) Phyllostachys nigra (Lodd. ex Lindl.) derived polysaccharide with enhanced glycolipid metabolism regulation and mice gut microbiome. Int J Biol Macromol 257

    Article  CAS  PubMed  Google Scholar 

  3. Zhu H, Yang T, Chen S, Wang X, He J, Luo Y (2023) Construction and characterization of chitosan/poly(acrylamide-[2-(methacryloyloxy)ethyl]trimethylammonium chloride) double-network hydrogel with enhanced antibacterial activity. Advanced Composites and Hybrid Materials 6(6):192

    Article  CAS  Google Scholar 

  4. Bakadia BM, Zhong A, Li X, Boni BOO, Ahmed AAQ, Souho T, Zheng R, Shi Z, Shi D, Lamboni L, Yang G (2022) Biodegradable and injectable poly(vinyl alcohol) microspheres in silk sericin-based hydrogel for the controlled release of antimicrobials: application to deep full-thickness burn wound healing. Advanced Composites and Hybrid Materials 5(4):2847–2872

    Article  CAS  Google Scholar 

  5. Atta OM, Manan S, Ul-Islam M, Ahmed AAQ, Ullah MW, Yang G (2022) Development and characterization of plant oil-incorporated carboxymethyl cellulose/bacterial cellulose/glycerol-based antimicrobial edible films for food packaging applications. Advanced Composites and Hybrid Materials 5(2):973–990

    Article  CAS  Google Scholar 

  6. Goyal S, Singhal P, Kumar R, Sharma P, Singh R, Umar A, Gupta M (2022) Antimicrobial potential of endophytic fungi from medicinal plants of tropical islands in Andaman India. ES Food & Agroforestry 8:57–65

    CAS  Google Scholar 

  7. Mondal SK, Perumal V, Das R, Roymahapatra G (2022) Antimicrobial and anticancer activity of a novel peptide (musterolysin) extracted from slurry of mustard oil refinery industry. ES Food & Agroforestry 10:24–29

    CAS  Google Scholar 

  8. Ruan J, Chang Z, Rong H, Alomar TS, Zhu D, AlMasoud N, Liao Y, Zhao R, Zhao X, Li Y, Xu BB, Guo Z, El-Bahy ZM, Li H, Zhang X, Ge S (2023) High-conductivity nickel shells encapsulated wood-derived porous carbon for improved electromagnetic interference shielding. Carbon 213:118208

    Article  CAS  Google Scholar 

  9. Huang F, Tian Z, Ma H, Ding Z, Ji X, Si C, Wang D (2023) Combined alkali impregnation and poly dimethyl diallyl ammonium chloride-assisted cellulase absorption for high-efficiency pretreatment of wheat straw. Advanced Composites and Hybrid Materials 6(6):230

    Article  CAS  Google Scholar 

  10. Fan W, Wang Q, Rong K, Shi Y, Peng W, Li H, Guo Z, Xu BB, Hou H, Algadi H, Ge S (2023) MXene enhanced 3D needled waste denim felt for high-performance flexible supercapacitors. Nano-Micro Letters 16(1):36

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shi C, An Y, Gao G, Xue J, Algadi H, Huang Z, Guo Z (2024) Insights into selective glucose photoreforming for coproduction of hydrogen and organic acid over biochar-based heterojunction photocatalyst cadmium sulfide/titania/biochar. ACS Sustainable Chemistry & Engineering 12:2538–2549

    Article  CAS  Google Scholar 

  12. Fei B, Wang D, AlMasoud N, Yang H, Yang J, Alomar TS, Puangsin B, Xu BB, Algadi H, El-Bahy ZM, Guo Z, Shi Z (2023) Bamboo fiber strengthened poly(lactic acid) composites with enhanced interfacial compatibility through a multi-layered coating of synergistic treatment strategy. Int J Biol Macromol 249:126018

    Article  CAS  PubMed  Google Scholar 

  13. Yuan Y, Wu F, Si J, Zhao Y-F, Dai Y-C (2019) Whole genome sequence of Auricularia heimuer (Basidiomycota, Fungi), the third most important cultivated mushroom worldwide. Genomics 111(1):50–58

    Article  CAS  PubMed  Google Scholar 

  14. Eduard W (2009) Fungal spores: a critical review of the toxicological and epidemiological evidence as a basis for occupational exposure limit setting. Crit Rev Toxicol 39(10):799–864

    Article  CAS  PubMed  Google Scholar 

  15. Das S, Chaudhari AK, Singh VK, Dwivedy AK, Dubey NK (2023) Chitosan based encapsulation of Valeriana officinalis essential oil as edible coating for inhibition of fungi and aflatoxin B1 contamination, nutritional quality improvement, and shelf life extension of Citrus sinensis fruits. Int J Biol Macromol 233:123565

    Article  CAS  PubMed  Google Scholar 

  16. Choochuay S, Phakam J, Jala P, Maneeboon T, Tansakul N (2018) Determination of Aflatoxin B1 in feedstuffs without clean-up step by high-performance liquid chromatography. International Journal of Analytical Chemistry 2018:4650764

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wei Y, Li L, Liu Y, Xiang S, Zhang H, Yi L, Shang Y, Xu W (2022) Identification techniques and detection methods of edible fungi species. Food Chem 374:131803

    Article  CAS  PubMed  Google Scholar 

  18. Hoyos-Carvajal L, Orduz S, Bissett J (2009) Genetic and metabolic biodiversity of Trichoderma from Colombia and adjacent neotropic regions. Fungal Genet Biol 46(9):615–631

    Article  CAS  PubMed  Google Scholar 

  19. López-Mondéjar R, Ros M, Pascual JA (2011) Mycoparasitism-related genes expression of Trichoderma harzianum isolates to evaluate their efficacy as biological control agent. Biol Control 56(1):59–66

    Article  Google Scholar 

  20. Yang R, Han Y, Li G, Jiang D, Huang H-C (2008) Effects of ambient pH and nutritional factors on antifungal activity of the mycoparasite Coniothyrium minitans. Biol Control 44(1):116–127

    Article  Google Scholar 

  21. Harman GE (2006) Overview of mechanisms and uses of Trichoderma spp. Phytopathology® 96(2):190–194

  22. Paterson RRM (2015) Editorial overview: food mycology, Current Opinion in Food. Science 5:v–vi

    Google Scholar 

  23. Venturini ME, Reyes JE, Rivera CS, Oria R, Blanco D (2011) Microbiological quality and safety of fresh cultivated and wild mushrooms commercialized in Spain. Food Microbiol 28(8):1492–1498

    Article  PubMed  Google Scholar 

  24. Mohebbi A, Nemati M, Farajzadeh MA, Afshar Mogaddam MR, Lotfipour F (2022) Application of calcium oxide as an efficient phase separation agent in temperature-induced counter-current homogenous liquid-liquid extraction of aflatoxins from dried fruit chips followed by high-performance liquid chromatography-tandem mass spectrometry determination. J Sep Sci 45(11):1894–1903

    Article  CAS  PubMed  Google Scholar 

  25. Zhang K, Banerjee K (2020) A review: sample preparation and chromatographic technologies for detection of aflatoxins in foods. Toxins 12(9):539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Owaid MN, Al Saeedi SS, AbedIA ShahbaziP, Sabaratnam V (2016) Antifungal activities of some Pleurotus species (higher Basidiomycetes). Walailak J Sci Tech (WJST) 14(3):215–224

    Google Scholar 

  27. Tolouee M, Alinezhad S, Saberi R, Eslamifar A, Zad SJ, Jaimand K, Taeb J, Rezaee M-B, Kawachi M, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M (2010) Effect of Matricaria chamomilla L. flower essential oil on the growth and ultrastructure of Aspergillus niger van Tieghem. Int J Food Microbiol 139(3):127–133

    Article  CAS  PubMed  Google Scholar 

  28. Arthur TM, Bosilevac JM, Nou X, Shackelford SD, Wheeler TL, Kent MP, Jaroni D, Pauling B, Allen DM, Koohmaraie M (2004) Escherichia Coli O157 prevalence and enumeration of aerobic bacteria, Enterobacteriaceae, and Escherichia coli O157 at various steps in commercial beef processing plants†. J Food Prot 67(4):658–665

    Article  PubMed  Google Scholar 

  29. Ebadzadsahrai G, Higgins Keppler EA, Soby SD, Bean HD (2020) Inhibition of fungal growth and induction of a novel volatilome in response to Chromobacterium vaccinii volatile organic compounds. Front Microbiol 11:1035

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ezekiel CN, Sulyok M, Frisvad JC, Somorin YM, Warth B, Houbraken J, Samson RA, Krska R, Odebode AC (2013) Fungal and mycotoxin assessment of dried edible mushroom in Nigeria. Int J Food Microbiol 162(3):231–236

    Article  CAS  PubMed  Google Scholar 

  31. Kim C, Nartea TJ, Pao S, Li H, Jordan KL, Xu Y, Stein RA, Sismour EN (2016) Evaluation of microbial loads on dried and fresh shiitake mushrooms (Lentinula edodes) as obtained from Internet and local retail markets. Respectively, Food Safety 4(2):45–51

    Article  PubMed  Google Scholar 

  32. Chen W, Gong L, Guo Z, Wang W, Zhang H, Liu X, Yu S, Xiong L, Luo J (2013) A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics. Mol Plant 6(6):1769–1780

    Article  CAS  PubMed  Google Scholar 

  33. Shen X, Wang R, Xiong X, Yin Y, Cai Y, Ma Z, Liu N, Zhu ZJ (2019) Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics. Nat Commun 10(1):1516

    Article  PubMed  PubMed Central  Google Scholar 

  34. Vandendriessche T, Keulemans J, Geeraerd A, Nicolai BM, Hertog ML (2012) Evaluation of fast volatile analysis for detection of Botrytis cinerea infections in strawberry. Food Microbiol 32(2):406–414

    Article  CAS  PubMed  Google Scholar 

  35. Stracquadanio C, Quiles JM, Meca G, Cacciola SO (2020) Antifungal activity of bioactive metabolites produced by Trichoderma asperellum and Trichoderma atroviride in liquid medium. Journal of Fungi 6(4):263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dai C, Tian E, Hao Z, Tang S, Wang Z, Sharma G, Jiang H, Shen J (2022) Aflatoxin B1 toxicity and protective effects of curcumin: molecular mechanisms and clinical implications. Antioxidants 11(10):2031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Coton M, Auffret A, Poirier E, Debaets S, Coton E, Dantigny P (2019) Production and migration of ochratoxin A and citrinin in Comté cheese by an isolate of Penicillium verrucosum selected among Penicillium spp. mycotoxin producers in YES medium. Food Microbiol 82:551–559

    Article  CAS  PubMed  Google Scholar 

  38. O’Brien M, Kavanagh K, Grogan H (2017) Detection of Trichoderma aggressivum in bulk phase III substrate and the effect of T. aggressivum inoculum, supplementation and substrate-mixing on Agaricus bisporus yields. Eur J Plant Pathol 147(1):199–209

    Article  Google Scholar 

  39. Köhl J, Kolnaar R, Ravensberg WJ (2019) Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front Plant Sci 10:845

    Article  PubMed  PubMed Central  Google Scholar 

  40. Largeteau ML, Savoie J-M (2010) Microbially induced diseases of Agaricus bisporus: biochemical mechanisms and impact on commercial mushroom production. Appl Microbiol Biotechnol 86(1):63–73

    Article  CAS  PubMed  Google Scholar 

  41. Ahluwalia V, Kumar J, Rana VS, Sati OP, Walia S (2015) Comparative evaluation of two Trichoderma harzianum strains for major secondary metabolite production and antifungal activity. Nat Prod Res 29(10):914–920

    Article  CAS  PubMed  Google Scholar 

  42. Li M-F, Li G-H, Zhang K-Q (2019) Non-volatile metabolites from Trichoderma spp. Metabolites 9(3):58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang EJ, Chang HC (2010) Purification of a new antifungal compound produced by Lactobacillus plantarum AF1 isolated from kimchi. Int J Food Microbiol 139(1):56–63

    Article  CAS  PubMed  Google Scholar 

  44. Romero-Sánchez I, Ramírez-García L, Gracia-Lor E, Madrid-Albarrán Y (2022) Simultaneous determination of aflatoxins B1, B2, G1 and G2 in commercial rices using immunoaffinity column clean-up and HPLC-MS/MS. Food Chem 395:133611

    Article  PubMed  Google Scholar 

  45. Yehia RS (2014) Aflatoxin detoxification by manganese peroxidase purified from Pleurotus ostreatus. Braz J Microbiol 45:127–134

    Article  PubMed  PubMed Central  Google Scholar 

  46. Loi M, Fanelli F, Zucca P, Liuzzi VC, Quintieri L, Cimmarusti MT, Monaci L, Haidukowski M, Logrieco AF, Sanjust E, Mulè G (2016) Aflatoxin B1 and M1 degradation by Lac2 from Pleurotus pulmonarius and redox mediators. Toxins 8(9):245

    Article  PubMed  PubMed Central  Google Scholar 

  47. Branà MT, Cimmarusti MT, Haidukowski M, Logrieco AF, Altomare C (2017) Bioremediation of aflatoxin B1-contaminated maize by king oyster mushroom (Pleurotus eryngii). PLoS ONE 12(8):e0182574

    Article  PubMed  PubMed Central  Google Scholar 

  48. Motomura M, Toyomasu T, Mizuno K, Shinozawa T (2003) Purification and characterization of an aflatoxin degradation enzyme from Pleurotus ostreatus. Microbiol Res 158(3):237–242

    Article  CAS  PubMed  Google Scholar 

  49. Gong X, Jadhav ND, Lonikar VV, Kulkarni AN, Zhang H, Sankapal BR, Ren J, Xu BB, Pathan HM, Ma Y, Lin Z, Witherspoon E, Wang Z, Guo Z (2024) An overview of green synthesized silver nanoparticles towards bioactive antibacterial, antimicrobial and antifungal applications. Adv Coll Interface Sci 323:103053

    Article  CAS  Google Scholar 

  50. Kaur A, Kumar R (2022) Formulation of biocompatible vancomycin conjugated gold nanoparticles for enhanced antibacterial efficacy. ES Energy & Environment 15:34–44

    CAS  Google Scholar 

  51. Wagh SS, Salunkhe DB, Patole SP, Jadkar S, Patil RS (2023) Zinc oxide decorated carbon nanotubes composites for photocatalysis and antifungal application. ES Energy & Environment 21:945

    CAS  Google Scholar 

  52. Atta OM, Manan S, Ul-Islam MU, Ahmed AAQ, Ullah MW, Yang G (2021) Silver decorated bacterial cellulose nanocomposites as antimicrobial food packaging materials. ES Food & Agroforestry 6:12–26

    CAS  Google Scholar 

  53. Huang A, Guo Y, Zhu Y, Chen T, Yang Z, Song Y, Wasnik P, Li H, Peng S, Guo Z, Peng X (2023) Durable washable wearable antibacterial thermoplastic polyurethane/carbon nanotube@silver nanoparticles electrospun membrane strain sensors by multi-conductive network. Advanced Composites and Hybrid Materials 6(3):101

    Article  CAS  Google Scholar 

  54. Lin J, Yao Z, Xiong M, Lin J, Hu F, Wei X, Huang S (2023) Directional transport of drug droplets based on structural and wettability gradients on antibacterial Janus wound plaster with hemostatic, antiextravasation, and prehealing properties. Advanced Composites and Hybrid Materials 6(6):193

    Article  CAS  Google Scholar 

  55. Wang W, Luo Q, Li L, Chen S, Wang Y, Du X, Wang N (2023) Hybrid nickel-molybdenum bimetallic sulfide nanozymes for antibacterial and antibiofouling applications. Advanced Composites and Hybrid Materials 6(4):139

    Article  CAS  Google Scholar 

  56. Turganbay S, Aidarova S, Kumargaliyeva S, Argimbayev D, Sabitov A, Iskakbayeva Z, Lyu M, Ibragimova N, Turganbay G (2024) Mechanochemical synthesis of hydrophilic sulfur nanoparticles in aqueous surfactant solutions and their antibacterial activity and acute toxicity in mice. ES Materials & Manufacturing 23:1020

    CAS  Google Scholar 

  57. Das G, Ghosh A, Sen AK (2022) Studies on the antidiarrheal activity and antimicrobial activity of Aegle marmelos dried fruit pulp: validating its traditional usage. ES Food & Agroforestry 7:48–53

    CAS  Google Scholar 

  58. Weng M, Liu S, Su J, Xu W, Huang J, Tan W, Liu Y, Min Y (2022) Hydrophobic and antimicrobial polyimide based composite phase change materials with thermal energy storage capacity, Applied as Multifunctional Construction Material, Engineered. Science 19:301–311

    CAS  Google Scholar 

  59. Ye M, Wang S, Ji X, Tian Z, Dai L, Si C (2022) Nanofibrillated cellulose-based superhydrophobic coating with antimicrobial performance. Advanced Composites and Hybrid Materials 6(1):30

    Article  Google Scholar 

  60. Turganbay S, Alex A, r. Ilin, N. Atageldiyeva, A. Jumagaziyeva, S. Kenesheva, G. Baigaipova, S. Mun, (2023) Synthesis, structure characterization, and antimicrobial activity of 2-amino-3-[(2-amino-2-carboxyethyl) disulfanyl] propanoic acid dihydrogen triiodide coordination compound. Eng Sci 25:956

    CAS  Google Scholar 

Download references

Funding

This research was funded by the National Key Research and Development Projects during the 13th Five Year Plan (2019YFC1606702); by the Key Laboratory of Selenium-rich Product Development and Quality Control of the Ministry of Agriculture and Rural Affairs opening project, China (Se-2021C06); and the Shaanxi Provincial Key Research and Development Program of China (2024NC-YBXM-186). The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University, Arar, KSA, for funding this research work through the project number “NBU-FPEJ-2024–540-03.” ZW would like to acknowledge the support from Oakland University.

Author information

Authors and Affiliations

Authors

Contributions

Haisheng Zhang, Hui Dang, and Zhe Wang designed this project and contributed to the main manuscript text. Mengjie Yang conducted experiments and wrote the main manuscript text. Baoshan Zhang, Ethan Burcar, Erin Witherspoon, William Winchester, Zeinhom M. El-Bahy, Mohamed H. Helal, Mohammed A. Amin, Yu Zhao, and Xianpan Bu have contributed to conducting the experiments, preparing figures, and writing. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Haisheng Zhang, Hui Dang or Zhe Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Zhang, H., Burcar, E. et al. Mutual inhibition of Aspergillus flavus and Auricularia auricula mycelium for the prevention of competing diseases during growth of fungi. Adv Compos Hybrid Mater 7, 89 (2024). https://doi.org/10.1007/s42114-024-00898-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-024-00898-3

Keywords

Navigation