Skip to main content
Log in

Combined alkali impregnation and poly dimethyl diallyl ammonium chloride-assisted cellulase absorption for high-efficiency pretreatment of wheat straw

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Bio-enzyme pretreatment can effectively reduce the chemical resistance of wood fibers, thereby resulting in a reduction in energy consumption during the pulping process. However, both cellulase and cellulose fibers commonly exhibit negative charge used in water, leading to inherent electrostatic repulsion. The present study developed a novel combined pretreatment approach involving alkali impregnation and poly dimethyl diallyl ammonium chloride (PDADMAC)-assisted treatment to enhance the efficiency of cellulase treatment and obtain pulp with superior properties. The results showed that the alkali impregnation effectively destroyed the waxy layer on the surface of wheat straw, enhancing the interaction between subsequent cellulase and wheat straw fibers. The presence of PDADMAC further facilitated cellulase adsorption onto the wheat straw surface. When the PDADMAC dosage was increased to 1.0 × 10−3 g/g wheat straw, the cellulase adsorption rate exhibited a significant increase of 42.28%. Additionally, at cellulase dosages of 10 and 15 U/g, the pulp filtration capacity demonstrated improvements of 35.41 and 16.30%, respectively. The present study aims to enhance the processing efficiency of cellulase in the pulping process, optimize the water filtration and paper-forming properties of wheat straw pulp, and provide essential theoretical and technical support for the efficient utilization of this valuable resource.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated for this study are included in the main figures. Other data that support the findings of this study are available on request from the corresponding author. Source data are provided with this paper.

References

  1. Maddodi BS, A LU, Devesh S, Rao AU, Shenoy GB, Jayawardane HTW, Sooriyaperkasam N, Kumar MP (2022) Repurposing plastic wastes in non-conventional engineered wood building bricks for constructional application-A mechanical characterization using experimental and statistical analysis. Eng Sci 18:329–336. https://doi.org/10.30919/es8d696

  2. Zhang H, Li S, Hang H, Wang R, Cheng C, Fedorovich KV, Mai X (2023) Mildew-resistant wood building materials with titanium oxide nanosheet. Eng Sci 21:816. https://doi.org/10.30919/es8e816

  3. Zhang H, Wang R, Wang L, Li S, Yuan Y, Wang N, Chen S, Mai X (2023) Super-hydrophobic wood composite with plexiglass coating. Eng Sci 23:865. https://doi.org/10.30919/es8d865

  4. Ruan J, Chang Z, Rong H, Alomar T, Zhu D, Almasoud N, Liao Y, Zhao R, Zhao X, Li Y, Xu B, Guo Z, El-bahy ZM, Li H, Zhang X, Ge S (2023) High-conductivity nickel shells encapsulated wood-derived porous carbon for improved electromagnetic interference shielding. Carbon 213:118208. https://doi.org/10.1016/j.carbon.2023.118208

  5. Lian M, Huang Y, Liu Y, Jiang D, Wu Z, Li B, Xu Q, Murugadoss V, Jiang Q, Huang M, Guo Z (2022) An overview of regenerable wood-based composites: preparation and applications for flame retardancy, enhanced mechanical properties, biomimicry, and transparency energy saving. Adv Compos Hybrid Ma 5(3):1612–1657. https://doi.org/10.1007/s42114-022-00475-6

    Article  Google Scholar 

  6. Panagiotou G, Olsson L (2007) Effect of compounds released during pretreatment of wheat straw on microbial growth and enzymatic hydrolysis rates. Biotechnol Bioeng 96(2):250–258. https://doi.org/10.1002/bit.21100

    Article  CAS  Google Scholar 

  7. Liu H, Xu T, Cai C, Liu K, Liu W, Zhang M, Du H, Si C, Zhang K (2022) Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv Funct Mater 32:2113082. https://doi.org/10.1002/adfm.202113082

    Article  CAS  Google Scholar 

  8. Liu H, Xu T, Liang Q, Zhao Q, Zhao D, Si C (2022) Compressible cellulose nanofibrils/reduced graphene oxide composite carbon aerogel for solid-state supercapacitor. Adv Compos Hybrid Mater 5:1168–1179. https://doi.org/10.1007/s42114-022-00427-0

    Article  CAS  Google Scholar 

  9. Liu K, Liu W, Li W, Duan Y, Zhou K, Zhang S, Ni S, Xu T, Du H, Si C (2022) Strong and highly conductive cellulose nanofibril/silver nanowires nanopaper for high performance electromagnetic interference shielding. Adv Compos Hybrid Mater 5:1078–1089. https://doi.org/10.1007/s42114-022-00425-2

    Article  CAS  Google Scholar 

  10. Xu T, Du H, Liu H, Liu W, Zhang X, Si C, Liu P, Zhang K (2021) Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv Mater 33:2101368. https://doi.org/10.1002/adma.202101368

    Article  CAS  Google Scholar 

  11. Xu T, Liu K, Sheng N, Zhang M, Liu W, Liu H, Dai L, Zhang X, Si C, Du H, Zhang K (2022) Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: properties, applications, and perspectives. Energy Storage Mater 48:244–262. https://doi.org/10.1016/j.ensm.2022.03.0137

    Article  Google Scholar 

  12. Liu W, Liu K, Du H, Zheng T, Zhang N, Xu T, Pang B, Zhang X, Si C, Zhang K (2022) Cellulose nanopaper: fabrication, functionalization and applications. Nano-Micro Letters 14:104. https://doi.org/10.1007/s40820-022-00849-x

    Article  CAS  Google Scholar 

  13. Minaret J, Dutta A (2016) Comparison of liquid and vapor hydrothermal carbonization of corn husk for the use as a solid fuel. Bioresource Technol 200:804–811. https://doi.org/10.1016/j.biortech.2015.11.010

    Article  CAS  Google Scholar 

  14. Varghese LM, Agrawal S, Nagpal R, Mishra OP, Bhardwaj NK, Mahajan R (2020) Eco-friendly pulping of wheat straw using crude xylano-pectinolytic concoction for manufacturing good quality paper. Environ Sci Pollut R 27(27):34574–34582. https://doi.org/10.1007/s11356-020-10119-1

    Article  Google Scholar 

  15. Zhao J, Li X, Qu Y, Gao P (2004) Alkaline peroxide mechanical pulping of wheat straw with enzyme treatment. Appl Biochem Biotech 112(1):13–24. https://doi.org/10.1385/ABAB:112:1:13

  16. Xu H, Chen K, Zhang L, Wu Y (2021) Synchronous silicon removal and viscosity reduction in the soda-oxygen pulping of wheat straw. Cellulose 28(14):9081–9089. https://doi.org/10.1007/s10570-021-04078-0

    Article  CAS  Google Scholar 

  17. Xu L, Zhang S, Zhong C, Li B, Yuan Y (2020) Alkali-based pretreatment-facilitated lignin valorization: a review. Ind Eng Chem Res 59(39):16923–16938. https://doi.org/10.1021/acs.iecr.0c01456

    Article  CAS  Google Scholar 

  18. Jia Q, Chen J, Yang G, Liu K, Wang Y, Zhang K (2022) Effects of lipase and xylanase pretreatment on the structure and pulping properties of wheat straw. Polymers 14(23):5129. https://doi.org/10.3390/polym14235129

    Article  CAS  Google Scholar 

  19. An L, Si C, Wang G, Sui W, Tao Z (2019) Enhancing the solubility and antioxidant activity of high-molecular-weight lignin by moderate depolymerization via in situ ethanol/acid catalysis. Ind Crop Prod 128:177–185. https://doi.org/10.1016/j.indcrop.2018.11.009

    Article  CAS  Google Scholar 

  20. Kandhola G, Djioleu A, Julie Carrier D, Kim J (2017) Pretreatments for enhanced enzymatic hydrolysis of pinewood: a review. Bioenerg Res 10:1138–1154. https://doi.org/10.1007/s12155-017-9862-3

    Article  CAS  Google Scholar 

  21. Xu T, Wang Y, Liu K, Zhao Q, Liang Q, Zhang M, Si C (2023) Ultralight MXene/carbon nanotube composite aerogel for high-performance flexible supercapacitor. Adv Compos Hybrid Mater 6:108. https://doi.org/10.1007/s42114-023-00675-8

    Article  CAS  Google Scholar 

  22. Ding Z, Tian Z, Ji X, Dai H, Si C (2022) Bio-inspired catalytic one-step prepared R-siloxane cellulose composite membranes with highly efficient oil separation. Adv Compos Hybrid Mater 5:2138–2153. https://doi.org/10.1007/s42114-022-00517-z

    Article  CAS  Google Scholar 

  23. Ye M, Wang S, Ji X, Tian Z, Dai L, Si C (2023) Nanofibrillated cellulose-based superhydrophobic coating with antimicrobial performance. Adv Compos Hybrid Mater 6:30. https://doi.org/10.1007/s42114-022-00602-3

    Article  CAS  Google Scholar 

  24. Xu T, Song Q, Liu K, Liu H, Pan J, Liu W, Dai L, Zhang M, Wang Y, Si C, Du H, Zhang K (2023) Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett 15:98. https://doi.org/10.1007/s40820-023-01073-x

    Article  CAS  Google Scholar 

  25. Xie Z, Tian Z, Liu S, Ma H, Ji X, Si C (2022) Effects of different amounts of cellulase on the microstructure and soluble substances of cotton stalk bark. Adv Compos Hybrid Ma 5:1294–1306. https://doi.org/10.1007/s42114-021-00400-3

    Article  CAS  Google Scholar 

  26. Li Y, Guo J, Li M, Tang Y, Murugadoss V, Seok L, Yu J, Sun L, Sun C, Luo Y (2021) Recent application of cellulose gel in flexible sensing-a review. ES Food & Agroforestry 4:9–27. https://doi.org/10.30919/esfaf466

  27. Zhang H, Yu C, Li X, Wang L, Huang J, Tong J, Lin Y, Min Y, Liang Y (2022) Recent developments of nanocellulose and its applications in polymeric composites. ES Food & Agroforestry 9:1–14. https://doi.org/10.30919/esfaf768

  28. Gu H, Huo X, Chen J, El-Bahy SM, El-Bahy ZM (2022) An overview of cellulose aerogel: classification and applications. ES Food & Agroforestry 10:1–9. https://doi.org/10.30919/esfaf782

  29. Khan SK, Ul-lslam M, Fatima A, Manan S, Khattak WA, Ullah MW, Yang G (2023) Potential of food and agro-industrial wastes for cost-effective bacterial cellulose production: an updated review of literature. ES Food & Agroforestry 13:905. https://doi.org/10.30919/esfaf905

  30. Mai C, Es UK, Militz H (2004) Biotechnology in the wood industry. Appl Microbiol Biot 63(5):477–494. https://doi.org/10.1007/s00253-003-1411-7

    Article  CAS  Google Scholar 

  31. Ilić N, Milić M, Beluhan S, Dimitrijević-Branković S (2013) Cellulases: from lignocellulosic biomass to improved production. Energies 16(8):3598. https://doi.org/10.3390/en16083598

    Article  CAS  Google Scholar 

  32. Wang Y, Ji X, Liu S, Tian Z, Si C, Wang R, Yang G, Wang D (2022) Effects of two different enzyme treatments on the microstructure of outer surface of wheat straw. Adv Compos Hybrid Ma 5(2):934–947. https://doi.org/10.1007/s42114-021-00395-x

    Article  CAS  Google Scholar 

  33. Duan C, Wang X, Zhang Y, Xu Y, Ni Y (2017) Fractionation and cellulase treatment for enhancing the properties of kraft-based dissolving pulp. Bioresource Technol 224:439–444. https://doi.org/10.1016/j.biortech.2016.10.077

    Article  CAS  Google Scholar 

  34. Sun J, Deng Y, Li S, Xu W, Liu G (2022) Enhanced efficiency of enzymatic hydrolysis of wheat straw via freeze-thaw pretreatment. Environ Sci Pollut R 29(37):56696–56704. https://doi.org/10.1007/s11356-022-18893-w

    Article  CAS  Google Scholar 

  35. Zhao J, Yao F, Hu C (2022) Enhancing enzymatic hydrolysis efficiency of crop straws via tetrahydrofuran/water co-solvent pretreatment. Bioresource Technol 358:127428. https://doi.org/10.1016/j.biortech.2022.127428

    Article  CAS  Google Scholar 

  36. Han L, Feng J, Zhang S, Ma Z, Wang Y, Zhang X (2012) Alkali pretreated of wheat straw and its enzymatic hydrolysis. Braz J Microbiol 43:53–61. https://doi.org/10.1590/s1517-83822012000100006

    Article  CAS  Google Scholar 

  37. Karimi K, Taherzadeh MJ (2016) A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity. Bioresource Technol 200:1008–1018. https://doi.org/10.1016/j.biortech.2015.11.022

    Article  CAS  Google Scholar 

  38. Mansfield SD, Mooney C, Saddler JN (1999) Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Progr 15(5):804–816. https://doi.org/10.1021/bp9900864

    Article  CAS  Google Scholar 

  39. Goshadrou A, Lefsrud M (2017) Synergistic surfactant-assisted [EMIM]OAc pretreatment of lignocellulosic waste for enhanced cellulose accessibility to cellulase. Carbohyd Polym 166:104–113. https://doi.org/10.1016/j.carbpol.2017.02.076

    Article  CAS  Google Scholar 

  40. Wang Q, Liu S, Yang G, Chen J, Ni Y (2015) Cationic polyacrylamide enhancing cellulase treatment efficiency of hardwood kraft-based dissolving pulp. Bioresource Technol 183:42–46. https://doi.org/10.1016/j.biortech.2015.02.011

    Article  CAS  Google Scholar 

  41. Gejji V, Fernando SD (2018) Harvesting microalgae using ionic polyelectrolytes in an aqueous-organic two-phase system: screening of separation parameters using model algal particles. Process Biochm 72:188–197. https://doi.org/10.1016/j.procbio.2018.06.010

    Article  CAS  Google Scholar 

  42. Saveyn H, Curvers D, Thas O, Van der Meeren P (2008) Optimization of sewage sludge conditioning and pressure dewatering by statistical modelling. Water Res 42(4):1061–1074. https://doi.org/10.1016/j.watres.2007.09.029

    Article  CAS  Google Scholar 

  43. Razali MAA, Ahmad Z, Ahmad MSB, Ariffin A (2011) Treatment of pulp and paper mill wastewater with various molecular weight of polyDADMAC induced flocculation. Chem Eng J 166(2):529–535. https://doi.org/10.1016/j.cej.2010.11.011

    Article  CAS  Google Scholar 

  44. Yang S, Wen Y, Duan C, Zhang H, Liu X, Ni Y (2019) Poly dimethyl diallyl ammonium chloride assisted cellulase pretreatment for pulp refining efficiency enhancement. Carbohyd Polym 203:342–348. https://doi.org/10.1016/j.carbpol.2018.09.079

    Article  CAS  Google Scholar 

  45. Jervis EJ, Haynes CA, Kilburn DG (1997) Surface diffusion of cellulases and their isolated binding domains on cellulose. J Biol Chem 272(38):24016–24023. https://doi.org/10.1074/jbc.272.38.24016

    Article  CAS  Google Scholar 

  46. Pierre G, Maache-Rezzoug Z, Sannier F, Rezzoug S, Maugard T (2011) High-performance hydrolysis of wheat straw using cellulase and thermomechanical pretreatment. Process Biochem 46(11):2194–2200. https://doi.org/10.1016/j.procbio.2011.09.002

    Article  CAS  Google Scholar 

  47. Zheng Q, Zhou T, Wang Y, Cao X, Wu S, Zhao M, Wang H, Xu M, Zheng B, Zheng J, Guan X (2018) Pretreatment of wheat straw leads to structural changes and improved enzymatic hydrolysis. Sci Rep-Uk 8(1):1321. https://doi.org/10.1038/s41598-018-19517-5

    Article  CAS  Google Scholar 

  48. Zhu P, Moran-Mirabal JM, Luterbacher JS, Walker LP, Craighead HG (2011) Observing Thermobifida fusca cellulase binding to pretreated wood particles using time-lapse confocal laser scanning microscopy. Cellulose 18(3):749–758. https://doi.org/10.1007/s10570-011-9506-2

    Article  CAS  Google Scholar 

  49. Ding S, Liu Y, Zeng Y, Himmel ME, Baker JO, Bayer EA (2012) How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 338(6110):1055–1060. https://doi.org/10.1007/s12155-015-9703-1

    Article  CAS  Google Scholar 

  50. Moreno-Atanasio R, Williams RA, Jia X (2010) Combining X-ray microtomography with computer simulation for analysis of granular and porous materials. Particuology 8(2):81–99. https://doi.org/10.1016/j.partic.2010.01.001

    Article  CAS  Google Scholar 

  51. Zhang L, Larsson A, Moldin A, Edlund U (2022) Comparison of lignin distribution, structure, and morphology in wheat straw and wood. Ind Crop Prod 187:115432. https://doi.org/10.1016/j.indcrop.2022.115432

    Article  CAS  Google Scholar 

  52. Yu H, Liu R, Shen D, Wu Z, Huang Y (2008) Arrangement of cellulose microfibrils in the wheat straw cell wall. Carbohyd Polym 72(1):122–127. https://doi.org/10.1016/j.carbpol.2007.07.035

    Article  CAS  Google Scholar 

  53. Lecourt M, Sigoillot J, Petit-Conil M (2010) Cellulase-assisted refining of chemical pulps: impact of enzymatic charge and refining intensity on energy consumption and pulp quality. Process Biochem 45(8):1274–1278. https://doi.org/10.1016/j.procbio.2010.04.019

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Key R&D Program of China (no. 2019YFC1905900), the National Natural Science Foundation of China (no. 32230070), Natural Science Foundation of Shandong Province of China (no. ZR2021ZD38), Jinan Innovation Team (no. 2021GXRC023, 202228044), the QUTJBZ Program (no. 2022JBZ01-05), and Taishan Scholars Program.

Author information

Authors and Affiliations

Authors

Contributions

F. H. designed the research and discussed the results. H. M. performed the experiments. Z. D. designed the research. X. J., C. S., and D. W. supervised the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Xingxiang Ji.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, F., Tian, Z., Ma, H. et al. Combined alkali impregnation and poly dimethyl diallyl ammonium chloride-assisted cellulase absorption for high-efficiency pretreatment of wheat straw. Adv Compos Hybrid Mater 6, 230 (2023). https://doi.org/10.1007/s42114-023-00789-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00789-z

Keywords

Navigation