Skip to main content
Log in

Hybrid nickel-molybdenum bimetallic sulfide nanozymes for antibacterial and antibiofouling applications

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Biofouling is ubiquitous in nature and is one of the biggest threats to medical, food, and engineering applications. Creating artificial nanomaterials (nanozymes) to copy the functionalities of natural enzymes is showing as an emerging technology for thwarting biofilm. Molybdenum disulfide (MoS2) is a potential nanozyme for biofilm control, but the practical feasibility is jeopardized by the insufficient catalytic efficiency. Herein, a hybrid nickel-molybdenum bimetallic sulfide (L-NiMoS2) is deliberately fabricated to ensure the abundant active site exposure. The optimized L-NiMoS2 exhibits a superior haloperoxidase-like activity for catalyzing the oxidation of Br into biocidal HOBr/OBr in the presence of H2O2, with a catalytic kinetic rate value being 2.6 and 135.7 times higher than the pristine NiMoS2 and MoS2, respectively. By performing haloperoxidase-like activity, L-NiMoS2 nanozyme shows extraordinary antibacterial capacity and antibiofouling performance in the open ocean. Collectively, this work provides an attractive strategy to create highly efficient MoS2 nanozyme through textural engineering and is expected to ignite further explorations of nanozymes for antibacterial and antibiofouling applications.

Graphical Abstract

A hybrid defective nickel-molybdenum bimetallic sulfide is constructed to mimic naturally occurring haloperoxidase, yielding superior antibiofouling ability in bio-aggressive seawater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Garrett TR, Bhakoo M, Zhang Z (2008) Bacterial adhesion and biofilms on surfaces. Pro Nat Sci 18(9):1049–1056. https://doi.org/10.1016/j.pnsc.2008.04.001

    Article  CAS  Google Scholar 

  2. Banerjee I, Pangule RC, Kane RS (2011) Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23(6):690–718. https://doi.org/10.1002/adma.201001215

    Article  CAS  Google Scholar 

  3. Kenawy ER, Worley SD, Broughton R (2007) The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromol 8(5):1359–1384. https://doi.org/10.1021/bm061150q

    Article  CAS  Google Scholar 

  4. Natalio F, Andre´ R, Hartog AF, Stoll B, Jochum KP, Wever R, Tremel W (2012) Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nat Nanotechnol 7:530–535. https://doi.org/10.1038/nnano.2012.91

    Article  CAS  Google Scholar 

  5. Wang C, Liu X, Yang T, Sridhar D, Algadi H, Xu BB, El-Bahy ZM, Li H, Ma Y, Li T, Guo Z (2023) An overview of metal-organic frameworks and their magnetic composites for the removal of pollutants. Sep Purif Technol 320:124144. https://doi.org/10.1016/j.seppur.2023.124144

  6. Wu R, Wang W, Luo Q, Zeng X, Li J, Li Y, Li Y, Li J, Wang N (2022) Room temperature synthesis of defective cerium oxide for efficient marine anti-biofouling. Adv Compos Hybrid Mater 5:2163–2170. https://doi.org/10.1007/s42114-021-00256-7

    Article  CAS  Google Scholar 

  7. Omae I (2003) General aspects of tin-free antifouling paints. Chem Rev 103:3431–3448. https://doi.org/10.1021/cr030669z

    Article  CAS  Google Scholar 

  8. Fitridge I, Dempster T, Guenther J, de Nys R (2012) The impact and control of biofouling in marine aquaculture: a review. Biofouling 28:649–669. https://doi.org/10.1080/08927014.2012.700478

    Article  Google Scholar 

  9. Luo Q, Li Y, Huo X, Li J, Li L, Wang W, Li Y, Chen S, Song Y, Wang N (2022) Stabilizing ultrasmall ceria-cluster nanozyme for antibacterial and antibiofouling applications. Small 18(16):2107401. https://doi.org/10.1002/smll.202107401

    Article  CAS  Google Scholar 

  10. Dobretsov S, Teplitski M, Paul V (2009) Mini-review: quorum sensing in the marine environment and its relationship to biofouling. Biofouling 25:413–427. https://doi.org/10.1080/08927010902853516

    Article  CAS  Google Scholar 

  11. Gao F, Liu Y, Jiao C, El-Bahy SM, Shao Q, El-Bahy ZM, Li H, Wasnik P, Algadi H, Xu BB, Wang N, Yuan Y, Guo Z (2023) Fluorine-phosphate copolymerization waterborne acrylic resin coating with enhanced anticorrosive performance. J Polym Sci 1–11. https://doi.org/10.1002/pol.20230108

  12. Herget K, Hubach P, Pusch S, Deglmann P, Götz H, Gorelik TE, Gural’skiy IA, Pfitzner F, Link T, Schenk S, Panthöfer M, Ksenofontov V, Kolb U, Opatz T, André R, Tremel W, (2017) Haloperoxidase mimicry by CeO2-x nanorods combats biofouling. Adv Mater 29(4):1603823. https://doi.org/10.1002/adma.201603823

    Article  CAS  Google Scholar 

  13. Rosenhahn A, Schilp S, Kreuzer HJ, Grunze M (2010) The role of “inert” surface chemistry in marine biofouling prevention. Phys Chem Chem Phys 12(17):4275–4286. https://doi.org/10.1039/C001968M

    Article  CAS  Google Scholar 

  14. Fusetani N (2004) Biofouling and antifouling. Nat Prod Rep 21(1):94–104. https://doi.org/10.1039/B302231P

    Article  CAS  Google Scholar 

  15. Wang W, Luo Q, Li J, Li Y, Wu R, Li Y, Huo X, Wang N (2022) Single-atom tungsten engineering of MOFs with biomimetic antibiofilm activity toward robust uranium extraction from seawater. Chem Eng J 431:133483. https://doi.org/10.1016/j.cej.2021.133483

  16. Butler A, Carter-Franklin JN (2004) The role of vanadium bromoperoxidase in the biosynthesis of halogenated marine natural products. Nat Prod Rep 21(1):180–188. https://doi.org/10.1039/B302337K

    Article  CAS  Google Scholar 

  17. Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H (2019) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 48(14):1004–1076. https://doi.org/10.1039/C3CS35486E

    Article  CAS  Google Scholar 

  18. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583. https://doi.org/10.1038/nnano.2007.260

    Article  CAS  Google Scholar 

  19. Wang W, Luo Q, Li J, Li L, Li Y, Huo X, Du X, Li Z, Wang N (2022) Photothermal-amplified single atom nanozyme for biofouling control in seawater. Adv Funct Mater 32(36):2205461. https://doi.org/10.1002/adfm.202205461

    Article  CAS  Google Scholar 

  20. Mohammadpour Z, Ghasemzadeh S, Askari E, Jebeli FM (2021) Iron oxychloride/bovine serum albumin nanosheets for catalytic H2O2 activation. Colloid Surface A 624:126793. https://doi.org/10.1016/j.colsurfa.2021.126793

  21. Mohammadpour Z, Hashemi ZS, Jebeli FM, Ghasemzadeh S, Askari E, Akbary-Yekta M, Sarrami-Forooshani R (2021) Iron oxychloride/bovine serum albumin nanosheets as chemodynamic therapy agents. Part Part Syst Charact 38(12):2100162. https://doi.org/10.1002/ppsc.202100162

    Article  CAS  Google Scholar 

  22. Mohammadpour Z, Jebeli FM, Ghasemzadeh S (2021) Peroxidase-mimetic activity of FeOCl nanosheets for the colorimetric determination of glutathione and cysteine. Microchim Acta 188:239. https://doi.org/10.1007/s00604-021-04903-0

    Article  CAS  Google Scholar 

  23. Luo Q, Li Y, Huo X, Li L, Song Y, Chen S, Lin H, Wang N (2022) Atomic chromium coordinated graphitic carbon nitride for bioinspired antibiofouling in seawater. Adv Sci 9(8):210534. https://doi.org/10.1002/advs.202105346

  24. Qi K, Cui X, Gu L, Yu S, Fan X, Luo M, Xu S, Li N, Zheng L, Zhang Q, Ma J, Gong Y, Lv F, Wang K, Huang H, Zhang W, Guo S, Zheng W, Liu P (2019) Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nat Commun 10:5231. https://doi.org/10.1038/s41467-019-12997-7

    Article  CAS  Google Scholar 

  25. Lau THM, Lu X, Kulhav´y J, Wu S, Lu L, Wu TS, Kato R, Foord JS, Soo YL, Suenagad K, Tsang SCE, (2018) Transition metal atom doping of the basal plane of MoS2 monolayer nanosheets for electrochemical hydrogen evolution. Chem Sci 9:4769–4776. https://doi.org/10.1039/C8SC01114A

    Article  CAS  Google Scholar 

  26. Sun K, Guo H, Jiao F, Chai Y, Li Y, Liu B, Mintova S, Liu C (2021) Design of an intercalated nano-MoS2 hydrophobic catalyst with high rim sites to improve the hydrogenation selectivity in hydrodesulfurization reaction. Appl Catal B Environ 286:119907. https://doi.org/10.1016/j.apcatb.2021.119907

  27. Bondarev A, Ponomarev I, Muydinov R, Polcar T (2022) Friend or foe? Revising the role of oxygen in the tribological performance of solid lubricant MoS2. ACS Appl Mater Interfaces 14(49):55051–55061. https://doi.org/10.1021/acsami.2c15706

    Article  CAS  Google Scholar 

  28. Wang L, Gao F, Wang A, Chen X, Li H, Zhang X, Zheng H, Ji R, Li B, Yu X, Liu J, Gu Z, Chen F, Chen C (2020) Defect-rich adhesive molybdenum disulfide/rGO vertical heterostructures with enhanced nanozyme activity for smart bacterial killing application. Adv Mater 32(48):2005423. https://doi.org/10.1002/adma.202005423

    Article  CAS  Google Scholar 

  29. Wang L, Zhang X, You Z, Yang Z, Guo M, Guo J, Liu H, Zhang X, Wang Z, Wang A, Lv Y, Zhang J, Yu X, Liu J, Chen C (2022) Charges-enhanced molybdenum disulfide nanozyme activity for ultrasound-mediated cascade-catalytic tumor ferroptosis. Angew Chem Int Ed:e202217448. https://doi.org/10.1002/anie.202217448

  30. Luo Q, Li J, Wang W, Li Y, Li Y, Huo X, Li J, Wang N (2022) Transition metal engineering of molybdenum disulfide nanozyme for biomimicking anti-biofouling in seawater. ACS Appl Mater Interfaces 14(12):14218–14225. https://doi.org/10.1021/acsami.2c00172

    Article  CAS  Google Scholar 

  31. Colpas GJ, Hamstra BJ, Kampf JW, Pecoraro VL (1996) Functional models for vanadium haloperoxidase: reactivity and mechanism of halide oxidation. J Am Chem Soc 118(14):3469–3478. https://doi.org/10.1021/ja953791r

    Article  CAS  Google Scholar 

  32. Chen C, Sun Q, Ren D, Zhang R, Bai F, Xing Y, Shi Z (2013) Bromoperoxidase mimic as catalysts for oxidative bromination-synthesis, structures and properties of the diversified oxidation state of vanadium (iii, iv and v) complexes with pincer N-heterocycle ligands. CrystEngComm 15(27):5561–6673. https://doi.org/10.1039/C3CE40410B

    Article  CAS  Google Scholar 

  33. Sokolov AV, Kostevich VA, Kozlov SO, Donskyi IS, Vlasova II, Rudenko AO, Zakharova ET, Vasilyev VB, Panasenko OM (2015) Kinetic method for assaying the halogenating activity of myeloperoxidase based on reaction of celestine blue B with taurine halogenamines. Free Radical Res 49(6):777–789. https://doi.org/10.3109/10715762.2015.1017478

    Article  CAS  Google Scholar 

  34. Liu Y, Zhang L, Wang H, Yu C, Yan X, Liu Q, Xu B, Wang L (2018) Synthesis of severe lattice distorted MoS2 coupled with hetero-bonds as anode for superior lithium-ion batteries. Electrochim Acta 262:162–172. https://doi.org/10.1016/j.electacta.2018.01.023

    Article  CAS  Google Scholar 

  35. Sun D, Ye D, Liu P, Tang Y, Guo J, Wang L, Wang H (2018) MoS2/graphene nanosheets from commercial bulky MoS2 and graphite as anode materials for high rate sodium-ion batteries. Adv Energy Mater 8(10):1702383. https://doi.org/10.1002/aenm.201702383

    Article  CAS  Google Scholar 

  36. Zhang G, Liu C, Guo L, Liu R, Miao L, Dang F (2022) Electronic “bridge” construction via Ag intercalation to diminish catalytic anisotropy for 2D tin diselenide cathode catalyst in lithium-oxygen batteries. Adv Energy Mater 12(27):2200791. https://doi.org/10.1002/aenm.202200791

    Article  CAS  Google Scholar 

  37. Yan Y, Xia B, Ge X, Liu Z, Wang J, Wang X (2013) Ultrathin MoS2 nanoplates with rich active sites as highly efficient catalyst for hydrogen evolution. ACS Appl Mater Interfaces 5(24):12794–12798. https://doi.org/10.1021/am404843b

    Article  CAS  Google Scholar 

  38. Li L, Qin Z, Ries L, Hong S, Michel T, Yang J, Salameh C, Bechelany M, Miele P, Kaplan D, Chhowalla M, Voiry D (2019) Role of sulfur vacancies and undercoordinated Mo regions in MoS2 nanosheets toward the evolution of hydrogen. ACS Nano 13(6):6824–6834. https://doi.org/10.1021/acsnano.9b01583

    Article  CAS  Google Scholar 

  39. Hou J, Zhang B, Li Z, Cao S, Sun Y, Wu Y, Gao Z, Sun L (2018) Vertically aligned oxygenated-CoS2-MoS2 heteronanosheet architecture from polyoxometalate for efficient and stable overall water splitting. ACS Catal 8(5):4612–4621. https://doi.org/10.1021/acscatal.8b00668

    Article  CAS  Google Scholar 

  40. Chaudhary N, Khanuja M, Islam ASS (2018) Hydrothermal synthesis of MoS2 nanosheets for multiple wavelength optical sensing applications. Sensor Actuat A 277:190–198. https://doi.org/10.1016/j.sna.2018.05.008

    Article  CAS  Google Scholar 

  41. Li G, Li N, Peng S, He B, Wang J, Du Y, Zhang W, Han K, Dang F (2021) Highly efficient Nb2C MXene cathode catalyst with uniform O-terminated surface for lithium-oxygen batteries. Adv Energy Mater 11(1):2002721. https://doi.org/10.1002/aenm.202002721

    Article  CAS  Google Scholar 

  42. Qiu Y, Li G, Zhou H, Zhang G, Guo L, Guo Z, Yang R, Fan Y, Wang W, Du Y, Dang F (2023) Highly stable garnet Fe2Mo3O12 cathode boosts the lithium-air battery performance featuring a polyhedral framework and cationic vacancy concentrated surface. Adv Sci 2300482. https://doi.org/10.1002/advs.202300482

  43. Ye Z, Li P, Wei W, Huang C, Mi L, Zhang J, Zhang J (2022) In situ anchoring anion-rich and multi-cavity NiS2 nanoparticles on NCNTs for advanced magnesium-ion batteries. Adv Sci 9(18):2200067. https://doi.org/10.1002/advs.202200067

    Article  CAS  Google Scholar 

  44. Zhong W, Zhao X, Qin J, Yang J (2021) An active hybrid electrocatalyst with synergized pyridinic nitrogen-cobalt and oxygen vacancies for bifunctional oxygen reduction and evolution. Chin J Chem 39:655–660. https://doi.org/10.1002/cjoc.202000445

    Article  CAS  Google Scholar 

  45. Xu Q, Liu Y, Jiang H, Hu Y, Liu H, Li C (2018) Unsaturated sulfur edge engineering of strongly coupled MoS2 nanosheet-carbon macroporous hybrid catalyst for enhanced hydrogen generation. Adv Energy Mater 9(2):1802553. https://doi.org/10.1002/aenm.201802553

    Article  CAS  Google Scholar 

  46. He B, Li G, Li J, Wang J, Tong H, Fan Y, Wang W, Sun S, Dang F (2021) MoSe2@CNT core-shell nanostructures as grain promoters featuring a direct Li2O2 formation/decomposition catalytic capability in lithium-oxygen batteries. Adv Energy Mater 11(18):2003263. https://doi.org/10.1002/aenm.202003263

    Article  CAS  Google Scholar 

  47. Lai W, Chen Z, Zhu J, Yang L, Zheng J, Yi X, Fang W (2016) A NiMoS flower-like structure with self-assembled nanosheets as high performance hydrodesulfurization catalysts. Nanoscale 8(6):3823–3833. https://doi.org/10.1039/C5NR08841K

    Article  CAS  Google Scholar 

  48. Guo Y, Tang J, Henzie J, Jiang B, Xia W, Chen T, Bando Y, Kang YM, Hossain MSA, Sugahara Y, Yamauchi Y (2020) Mesoporous iron-doped MoS2/CoMo2S4 heterostructures through organic-metal cooperative interactions on spherical micelles for electrochemical water splitting. ACS Nano 14(4):4141–4152. https://doi.org/10.1021/acsnano.9b08904

    Article  CAS  Google Scholar 

  49. Zhang G, Li G, Wang J, Tong H, Wang J, Du Y, Sun S, Dang F (2022) 2D SnSe cathode catalyst featuring an efficient facet-dependent selective Li2O2 growth/decomposition for Li-oxygen batteries. Adv Energy Mater 12(21):2103910. https://doi.org/10.1002/aenm.202103910

    Article  CAS  Google Scholar 

  50. Hu M, Korschelt K, Viel M, Wiesmann N, Kappl M, Brieger J, Landfester K, Aubin HT, Tremel W (2018) Nanozymes in nanofibrous mats with haloperoxidase-like activity to combat biofouling. ACS Appl Mater Interfaces 10(51):44722–44730. https://doi.org/10.1021/acsami.8b16307

    Article  CAS  Google Scholar 

  51. Weller R, Schrems O (1993) H2O2 in the marine troposphere and seawater of the Atlantic Ocean (48°N-63°S). Geophys Res Lett 20(2):125–128. https://doi.org/10.1029/93GL00065

    Article  CAS  Google Scholar 

Download references

Funding

This work has been financially supported by the Hainan Science and Technology Major Project (ZDKJ2020011), the National Natural Science Foundation of China (52172195), the Start-up Research Foundation of Hainan University (KYQD(ZR)1907), and the Innovation Platform for Academicians of Hainan Province (HD-YSZX-202007 and HD-YSZX-202008).

Author information

Authors and Affiliations

Authors

Contributions

Ning Wang and Qiang Luo supervised and conceptualized the project. Qiang Luo and Wei Wang designed and conducted the experiments. Linqian Li, Shipeng Chen, Yifan Wang, and Xiwen Du contributed to the discussions and provided critical revisions.

Corresponding authors

Correspondence to Qiang Luo or Ning Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 40919 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Luo, Q., Li, L. et al. Hybrid nickel-molybdenum bimetallic sulfide nanozymes for antibacterial and antibiofouling applications. Adv Compos Hybrid Mater 6, 139 (2023). https://doi.org/10.1007/s42114-023-00718-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00718-0

Keywords

Navigation