Skip to main content

Advertisement

Log in

Hierarchical porous Mo-Co3O4-CNTc nanosheets for aqueous rechargeable zinc ion batteries with ultralong life

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Aqueous rechargeable zinc ion batteries (ZIBs) are a promising next-generation energy storage device, which suffers from poor capacity and limited cycle life. In this work, a ZIB cathode material was reported, consisting of a composite of Co3O4 doped with Mo and carboxylic carbon nanotubes (Mo-Co3O4-CNTc), with a hierarchical porous structure arising from ultrathin nanosheets. The composite was prepared via a sol-gel method in an emulsion system. The experimental electrochemical data and density-functional first-principles calculations showed that the as-prepared Mo-Co3O4-CNTc composites with 152.9 mAh g−1 showed superior electrochemical performance compared to pure Co3O4 (as 107.3 mAh g−1) and Mo-Co3O4 (as 112.0 mAh g−1) electrode materials. Furthermore, the as-prepared MoCo-Zn batteries, with zinc metal foil anode and Mo-Co3O4-CNTc cathode, exhibited a specific capacity of 195.7 mAh g−1 at 0.5 A g−1, energy density of 237.6 Wh kg−1 at 1692.4 W kg−1, and a remarkable ultralong cycling life of over 10,000 cycles with 85.1% capacity retention. The superior performance can be attributed to the hierarchical porous structures with open spaces acting as “ion-buffering reservoirs.” The summary of zinc ion storage mechanism in the MoCo-Zn batteries was investigated during the charge-discharge process. Therefore, this work promotes the development of innovative strategies to synthesize carbon-modified composites with hierarchical porous nanosheets as cathode materials, for the ultra-long cycle-life aqueous rechargeable ZIBs.

Graphical Abstract

The cathode materials of Mo-doped in hierarchical porous Mo-Co3O4-CNTc composites were fabricated for aqueous rechargeable zinc ions batteries with ultra-long cycle life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pu LY, Zhang JX, Jiresse NKL, Gao YF, Zhou HJ, Naik N, Gao P, Guo ZH (2022) N-doped MXene derived from chitosan for the highly effective electrochemical properties as supercapacitor. Adv Compos Hybrid Mater 5:356–369

    CAS  Google Scholar 

  2. Ahmed FBM, Khalafallah D, Zhi MJ, Hong ZL (2022) Porous nanoframes of sulfurized NiAl layered double hydroxides and ternary bismuth cerium sulfide for supercapacitor electrodes. Adv Compos Hybrid Mater 5:2500–2514

    CAS  Google Scholar 

  3. Qu KQ, Sun Z, Shi C, Wang WC, Xiao LD, Tian JY, Huang ZH, Guo ZH (2021) Dual-acting cellulose nanocomposites filled with carbon nanotubes and zeolitic imidazolate framework-67 (ZIF-67)-derived polyhedral porous Co3O4 for symmetric supercapacitors. Adv Compos Hybrid Mater 4:670–683

    CAS  Google Scholar 

  4. Xiao LD, Qi HJ, Qu KQ, Shi C, Cheng Y, Sun Z, Yuan BN, Huang ZH, Pan D, Guo ZH (2021) Layer-by-layer assembled free-standing and flexible nanocellulose/porous Co3O4 polyhedron hybrid film as supercapacitor electrodes. Adv Compos Hybrid Mater 4:306–316

    CAS  Google Scholar 

  5. Ma YP, Xie XB, Yang WY, Yu ZP, Sun XQ, Zhang YP, Yang XY, Kimura H, Hou CX, Guo ZH, Du W (2021) Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors. Adv Compos Hybrid Mater 4:906–924

    CAS  Google Scholar 

  6. Liu L, Guo ZY, Yang J, Wang SY, He ZF, Wang C (2021) High ion selectivity Aquivion-based hybrid membranes for all vanadium redox flow battery. Adv Compos Hybrid Mater 4:451–458

    CAS  Google Scholar 

  7. Hou CX, Wang B, Murugadoss V, Vupputuri S, Chao YF, Guo ZH, Wang CY, Du W (2020) Recent advances in Co3O4 as anode materials for high-performance lithium-ion batteries. Eng Sci 11:19–30

    CAS  Google Scholar 

  8. Hou CX, Yang WY, Kimura H, Xie XB, Zhang XY, Sun XQ, Yu ZP, Yang XY, Zhang YP, Wang B, Xu BB, Sridhar D, Algadi H, Guo ZH, Du W (2023) Boosted lithium storage performance by local build-in electric field derived by oxygen vacancies in 3D holey N-doped carbon structure decorated with molybdenum dioxide. J Mater Sci Technol 142:185–195

    Google Scholar 

  9. Hou CX, Yang WY, Xie XB, Sun XQ, Wang J, Naik N, Pan D, Mai XM, Guo ZH, Dang F, Du W (2021) Agaric-like anodes of porous carbon decorated with MoO2 nanoparticles for stable ultralong cycling lifespan and high-rate lithium/sodium storage. J Colloid Interface Sci 596:396–407

    CAS  Google Scholar 

  10. Dang CC, Mu Q, Xie XB, Sun XQ, Yang XY, Zhang YP, Maganti S, Huang MN, Jiang QL, Seok I, Du W, Hou CX (2022) Recent progress in cathode catalyst for nonaqueous lithium oxygen batteries: a review. Adv Compos Hybrid Mater 5:606–626

    Google Scholar 

  11. Zhai YJ, Yang WY, Xie XB, Sun XQ, Wang J, Yang XY, Naik N, Kimura H, Du W, Guo ZH, Hou CX (2022) Co3O4 nanoparticles dotted hierarchical-assembled carbon nanosheet frameworks catalysts with formation/decomposition mechanisms of Li2O2 for smart lithium-oxygen batteries. Inorg Chem Front 9:1115–1124

    CAS  Google Scholar 

  12. Liu HY, Xu T, Liang QD, Zhao QS, Zhao DW, Si CL (2022) Compressible cellulose nanofibrils/reduced graphene oxide composite carbon aerogel for solid-state supercapacitor. Adv Compos Hybrid Mater 5:1168–1179

    CAS  Google Scholar 

  13. Yang ZL, Han L, Fu XB, Wang YL, Huang HL, Xu M (2022) Double-safety flexible supercapacitor basing on zwitterionic hydrogel: over-heat alarm and flame-retardant electrolyte. Adv Compos Hybrid Mater 5:1876–1887

    CAS  Google Scholar 

  14. Zhao YL, Liu F, Zhu KJ, Maganti S, Zhao ZY, Bai PK (2022) Three-dimensional printing of the copper sulfate hybrid composites for supercapacitor electrodes with ultra-high areal and volumetric capacitances. Adv Compos Hybrid Mater 5:1537–1547

    CAS  Google Scholar 

  15. Yang WY, Peng DN, Kimura H, Zhang XY, Sun XQ, Pashameah RA, Alzahrani E, Wang B, Guo ZH, Du W, Hou CX (2022) Honeycomb-like nitrogen-doped porous carbon decorated with Co3O4 nanoparticles for superior electrochemical performance pseudo-capacitive lithium storage and supercapacitors. Adv Compos Hybrid Mater 5:3146–3157

    CAS  Google Scholar 

  16. Ma YP, Hou CX, Kimura H, Xie XB, Jiang HY, Sun XQ, Yang XY, Zhang YP, Du W (2023) Recent advances in the application of carbon-based electrode materials for high-performance zinc ion capacitors: a mini review. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-023-00636-1

    Article  Google Scholar 

  17. Maurya DK, Dhanusuraman R, Guo ZH, Angaiah S (2023) Na-ion conducting filler embedded 3D-electrospun nanofibrous hybrid solid polymer membrane electrolyte for high-performance Na-ion capacitor. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00604-1

    Article  Google Scholar 

  18. Wang MM, Meng YH, Li K, Ahmad T, Chen N, Xu Y, Sun JF, Chuai MY, Zheng XH, Yuan Y, Shen CY, Zhang ZQ, Chen W (2021) High-performance Zn battery with transition metal ions co-regulated electrolytic MnO2. eScience 1:178–185

    Google Scholar 

  19. Li TC, Fang DL, Zhang JT, Pam ME, Leong ZY, Yu JZ, Li XL, Yan D, Yang HY (2021) Recent progress in aqueous zinc-ion batteries: a deep insight into zinc metal anodes. J Mater Chem A 9:6013–6028

    CAS  Google Scholar 

  20. Wang MM, Meng YH, Li K, Ahmad T, Chen N, Xu Y, Sun JF, Chuai MY, Zheng XH, Yuan Y, Shen CY, Zhang ZQ, Chen W (2022) Toward dendrite-free and anti-corrosion Zn anodes by regulating a bismuth-based energizer. eScience 2:509–517

    Google Scholar 

  21. Li JW, McColl K, Lu XK, Sathasivam S, Dong HB, Kang LQ, Li ZN, Zhao SY, Kafizas AG, Wang R, Brett DJL, Shearing PR, Corà F, He GJ, Carmalt CJ, Parkin IP (2020) Multi-scale investigations of δ-Ni0.25V2O5·nH2O cathode materials in aqueous zinc-ion batteries. Adv Energy Mater 10:2000058

    CAS  Google Scholar 

  22. Lu YZ, Wang J, Zeng SQ, Zhou LJ, Xu W, Zheng DZ, Liu J, Zeng YX, Lu XH (2019) An ultrathin defect-rich Co3O4 nanosheet cathode for high-energy and durable aqueous zinc ion batteries. J Mater Chem A 7:21678–21683

    CAS  Google Scholar 

  23. Lu YF, Zhang HJ, Liu HD, Nie ZT, Xu F, Zhao Y, Zhu JX, Huang W (2021) Electrolyte dynamics engineering for flexible fiber-shaped aqueous zinc-ion battery with ultralong stability. Nano Lett 21:9651–9660

    CAS  Google Scholar 

  24. Xie YL, Fei B, Cai DP, Chen QD, Cui ZX, Wang QT, Zhan HB (2020) Multicomponent hierarchical NiCo2O4@CoMoO4@Co3O4 arrayed structures for high areal energy density aqueous NiCo//Zn batteries. Energy Storage Mater 31:27–35

    Google Scholar 

  25. Zhao JK, Wei DN, Zhang C, Shao Q, Murugadoss V, Guo ZH, Jiang QL, Yang XJ (2021) An overview of oxygen reduction electrocatalysts for rechargeable zinc-air batteries enabled by carbon and carbon composites. Eng Sci 15:1–19

    Google Scholar 

  26. Mu Q, Liu RL, Kimura H, Li JC, Jiang HY, Zhang XY, Yu ZP, Sun XQ, Algadi H, Guo ZH, Du W, Hou CX (2023) Supramolecular self-assembly synthesis of hemoglobin-like amorphous CoP@N, P-doped carbon composites enable ultralong stable cycling under high-current density for lithium-ion battery anodes. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00607-y

    Article  Google Scholar 

  27. Idrees M, Liu LQ, Batool S, Luo HB, Liang J, Xu BB, Wang S, Kong J (2019) Cobalt-doping enhancing electrochemical performance of silicon/carbon nanocomposite as highly efficient anode materials in lithium-ion batteries. Eng Sci 6:64–76

    Google Scholar 

  28. Hu SQ, Zhang ZW, Wang ZT, Zeng KY, Cheng Y, Chen J, Zhang G (2018) Significant reduction in thermal conductivity of lithium cobalt oxide cathode upon charging: propagating and non-propagating thermal energy transport. ES Energy Environ 1:74–79

    Google Scholar 

  29. Gadwal MS, Kaur J, Shaikh SF, Lokhande PE, Mathe VL, Sartale SD, Pathan HM (2022) Investigations on the magnetic properties of patterned cobalt grown on a mechanically scratched copper substrate. ES Mater Manuf 18:1–9

    CAS  Google Scholar 

  30. Lai CW, Wang SH, Cheng LL, Wang YX, Fu L, Sun Y, Lin BP (2021) High-performance asymmetric supercapacitors of advanced double ion-buffering reservoirs based on battery-type hierarchical flower-like Co3O4-GC microspheres and 3D holey graphene aerogels. Electrochim Acta 365:137334

    CAS  Google Scholar 

  31. Lai CW, Guo Y, Zhao HH, Song HX, Qu XX, Huang MN, Hong SW, Lee K (2022) High-performance double “ion-buffering reservoirs” of asymmetric supercapacitors enabled by battery-type hierarchical porous sandwich-like Co3O4 and 3D graphene aerogels. Adv Compos Hybrid Mater 5:2557–2574

    CAS  Google Scholar 

  32. Shen YN, Li ZH, Cui Z, Zhang K, Zou RJ, Yang F, Xu KB (2020) Boosting the interface reaction activity and kinetics of cobalt molybdate by phosphating treatment for aqueous zinc-ion batteries with high energy density and long cycle life. J Mater Chem A 8:21044–21052

    CAS  Google Scholar 

  33. Lv YL, Zhu L, Xu HX, Yang L, Liu ZP, Cheng DJ, Cao XH, Yun J, Cao DP (2019) Core/shell template-derived Co, N-doped carbon bifunctional electrocatalysts for rechargeable Zn-air battery. Eng Sci 7:26–37

    Google Scholar 

  34. Li GY, Dang CC, Hou Y, Dang F, Fan YQ, Guo ZH (2020) Experimental and theoretical characteristic of single atom Co-N-C catalyst for Li-O2 batteries. Eng Sci 10:85–94

    Google Scholar 

  35. Peng ZY, Jiang QL, Peng P, Li FF (2021) NH3-activated fullerene derivative hierarchical microstructures to porous Fe3O4/N-C for oxygen reduction reaction and Zn-air battery. Eng Sci 14:27–38

    CAS  Google Scholar 

  36. Fu YX, Pei XY, Dai Y, Mo DC, Lyu SS (2019) Three-dimensional graphene-like carbon prepared from CO2 as anode material for high-performance lithium-ion batteries. ES Energy Environ 4:66–73

    Google Scholar 

  37. Mohamed Z, Zhang GL, He B, Fan YQ (2022) Heterostructure necklace-like NiO-NiCo2O4 hybrid with superior catalytic capability as electrocatalyst for Li-O2 batteries. Eng Sci 17:231–241

    CAS  Google Scholar 

  38. Meng LT, Hou CP, Hou J, Xie HD, Yue ZY, Lu H, Yang SL, Gong BL (2022) Preparation and performance of in situ carbon-coated silicon monoxide@C@carbon microspheres composite anode material for lithium-ion batteries. Eng Sci 20:134–143

    CAS  Google Scholar 

  39. Lai CW, Wang YX, Fu L, Song HX, Liu B, Pan D, Guo ZH, Seok I, Li KW, Zhang HR, Dong MY (2022) Aqueous flexible all-solid-state NiCo-Zn batteries with high capacity based on advanced ion-buffering reservoirs of NiCo2O4. Adv Compos Hybrid Mater 5:536–546

    CAS  Google Scholar 

  40. Wei TY, Chen CH, Chien HC, Lu SY, Hu CC (2010) A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process. Adv Mater 22:347–351

    CAS  Google Scholar 

  41. Xiong SS, Weng ST, Tang Y, Qian L, Xu YQ, Li XF, Lin HJ, Xu YC, Jiao Y, Chen JR (2021) Mo-doped Co3O4 ultrathin nanosheet arrays anchored on nickel foam as a bi-functional electrode for supercapacitor and overall water splitting. J Colloid Interf Sci 602:355–366

    CAS  Google Scholar 

  42. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp Mater Sci 6:15–50

    CAS  Google Scholar 

  43. Torres E, Kaloni TP (2020) Projector augmented-wave pseudopotentials for uranium-based compounds. Comp Mater Sci 171:109237

    CAS  Google Scholar 

  44. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Google Scholar 

  45. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    CAS  Google Scholar 

  46. Methfessel M, Paxton AT (1989) High-precision sampling for Brillouin-zone integration in metals. Phys Rev B 40:3616–3621

    CAS  Google Scholar 

  47. Guterding D, Jeschke HO (2018) An efficient GPU algorithm for tetrahedron-based Brillouin-zone integration. Comput Phys Commun 231:114–121

    CAS  Google Scholar 

  48. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    CAS  Google Scholar 

  49. Himmetoglu B, Floris A, Gironcoli S, Cococcioni M (2014) Hubbard-corrected DFT energy functionals: the LDA+U description of correlated systems. Int J Quantum Chem 114:14–49

    CAS  Google Scholar 

  50. Lai CW, Sun Y, Zhang XQ, Yang H, Kang WW, Lin BP (2018) Advanced flower-like Co3O4 with ultrathin nanosheets and 3D rGO aerogels as double ion-buffering reservoirs for asymmetric supercapacitors. Electrochim Acta 271:379–387

    CAS  Google Scholar 

  51. Lai CW, Sun Y, Zhang XQ, Yang H, Lin BP (2018) High-performance double ion-buffering reservoirs of asymmetric supercapacitors based on flower-like Co3O4-G>N-PEGm microspheres and 3D rGO-CNT>N-PEGm aerogels. Nanoscale 10:17293–17303

    CAS  Google Scholar 

  52. Yu MQ, Jiang LX, Yang HG (2015) Ultrathin nanosheets constructed CoMoO4 porous flower with high activity for electrocatalytic oxygen evolution. Chem Commun 51:14361–14364

    CAS  Google Scholar 

  53. Li FS, Li QY, Kimura H, Xie XB, Zhang XY, Wu NN, Sun XQ, Xu BB, Algadi H, Pashameah RA, Alanazi AK, Alzahrani E, Li HD, Du W, Guo ZH, Hou CX (2023) Morphology controllable urchin-shaped bimetallic nickel-cobalt oxide/carbon composites with enhanced electromagnetic wave absorption performance. J Mater Sci Technol 148:250–259

    Google Scholar 

  54. Kim HS, Cook JB, Lin H, Ko JS, Tolbert SH, Ozolins V, Dunn B (2017) Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. Nat Mater 16:454–460

    CAS  Google Scholar 

  55. Hou LR, Shi YY, Zhu SQ, Rehan M, Pang G, Zhang XG, Yuan CZ (2017) Hollow mesoporous hetero-NiCo2S4/Co9S8 submicro-spindles: unusual formation and excellent pseudocapacitance towards hybrid supercapacitors. J Mater Chem A 5:133–144

    CAS  Google Scholar 

  56. Zhang HY, Wang JC, Sun Y, Zhang XQ, Yang H, Lin BP (2021) Wire spherical-shaped Co-MOF electrode materials for high-performance all-solid-state flexible asymmetric supercapacitor device. J Alloys Compd 879:160423

    CAS  Google Scholar 

  57. Li PX, Ruan CH, Xu J, Xie YB (2020) Supercapacitive performance of CoMoO4 with oxygen vacancy porous nanosheet. Electrochim Acta 330:135334

    CAS  Google Scholar 

  58. Meng YN, Yu DY, Teng YF, Liu XL, Liu XY (2020) A high-performance electrode based on the ZnCo2O4@CoMoO4 core-shell nanosheet arrays on nickel foam and their application in battery-supercapacitor hybrid device. Electrochim Acta 347:136278

    CAS  Google Scholar 

  59. Wang XH, Rong F, Huang FF, He P, Yang Y, Tang JP, Que RH (2019) Facile synthesis of hierarchical CoMoO4@Ni(OH)2 core-shell nanotubes for bifunctional supercapacitors and oxygen electrocatalysts. J Alloys Compd 789:684–692

    CAS  Google Scholar 

  60. Yu B, Jiang GH, Xu WC, Cao C, Liu YK, Lei N, Evariste U, Ma PP (2019) Construction of NiMoO4/CoMoO4 nanorod arrays wrapped by Ni-Co-S nanosheets on carbon cloth as high performance electrode for supercapacitor. J Alloys Compd 799:415–424

    CAS  Google Scholar 

  61. Wang XW, Wang FX, Wang LY, Li MX, Wang YF, Chen BW, Zhu YS, Fu LJ, Zha LS, Zhang LX, Wu YP, Huang W (2016) An aqueous rechargeable Zn//Co3O4 battery with high energy density and good cycling behavior. Adv Mater 28:4904–4911

    CAS  Google Scholar 

  62. Wang H, Liu J, Wang JQ, Hu MM, Feng YP, Wang PP, Wang YY, Nie NY, Zhang JH, Chen H, Yuan QH, Wu JW, Huang Y (2019) Concentrated hydrogel electrolyte-enabled aqueous rechargeable NiCo//Zn battery working from -20 to 50 °C. ACS Appl Mater Interfaces 11:49–55

    CAS  Google Scholar 

  63. Wang NZ, Yang GC, Gan Y, Wan HZ, Chen X, Wang C, Tan QY, Ji J, Zhao XJ, Liu PC, Zhang J, Peng XN, Wang HB, Wang Y, Ma GK, Aken P, Wang H (2020) Contribution of cation addition to MnO2 nanosheets on stable Co3O4 nanowires for aqueous zinc-ion battery. Front Chem 8:793

    Google Scholar 

  64. Zhang N, Cheng FY, Liu JX, Wang LB, Long XH, Liu XS, Li FJ, Chen J (2017) Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat Commun 8:405

    CAS  Google Scholar 

  65. Liu Y, Wang J, Zeng YX, Liu J, Liu XQ, Lu XH (2020) Interfacial engineering coupled valence tuning of MoO3 cathode for high-capacity and high-rate fiber-shaped zinc-ion batteries. Small 16:1907458

    CAS  Google Scholar 

  66. Liu ZX, Yang Q, Wang DH, Liang GJ, Zhu YH, Mo FN, Huang ZD, Li XL, Ma LT, Tang TC, Lu ZG, Zhi CY (2019) A flexible solid-state aqueous zinc hybrid battery with flat and high-voltage discharge plateau. Adv Energy Mater 9:1902473

    CAS  Google Scholar 

  67. Lai CW, Cheng LL, Sun Y, Lee K, Lin BP (2021) Alkaline aqueous rechargeable Ni-Fe batteries with high-performance based on flower-like hierarchical NiCo2O4 microspheres and vines-grapes-like Fe3O4-NGC composites. Appl Surf Sci 563:150411

    CAS  Google Scholar 

  68. Lai CW, Qu XX, Zhao HH, Hong SW, Lee K (2022) Improved performance in asymmetric supercapacitors utilized by dual ion-buffering reservoirs based on honeycomb-structured NiCo2O4 and 3D rGO-PPy aerogels. Appl Surf Sci 586:152847

    CAS  Google Scholar 

  69. Lai CW, Lee K (2022) Double ion-buffering reservoirs of advanced NiCo//G-PANI asymmetric supercapacitors with high performance. J Alloys Compd 907:164490

    CAS  Google Scholar 

  70. Tang W, Lan BX, Tang C, An QY, Chen LN, Zhang WW, Zuo CL, Dong SJ, Luo P (2020) Urchin-like spinel MgV2O4 as a cathode material for aqueous zinc-ion battery. ACS Sustain Chem Eng 8:3681–3688

    CAS  Google Scholar 

  71. Lai CW, Sun Y, Zhang XQ, Yang H, Lin BP (2018) Gradual “OH-incursion” outside-inside strategy in construction of 3D flower-like Co3O4-CNT>N-PEGm hierarchical microspheres for supercapacitors. Mater Today Energy 9:27–38

    Google Scholar 

  72. Lai CW, Sun Y, Lin BP (2019) Synthesis of sandwich-like porous nanostructure of Co3O4-rGO for flexible all-solid-state high-performance asymmetric supercapacitors. Mater Today Energy 13:342–352

    Google Scholar 

  73. Guo Y, Xue YB, Li CB, Li XC (2019) Electronic properties of the graphdiyne/CH3NH3PbI3 interface: a first-principles study. Phy Status Solidi-R 14:1900544

    Google Scholar 

  74. Guo Y, Xue YB, Xu LQ (2021) Interfacial interactions and properties of lead oxysalts passivated MAPbI3 perovskites from first-principles calculations. Comp Mater Sci 187:110081

    CAS  Google Scholar 

  75. Guo Y, Xue YB, Xu LQ (2021) Interfacial interactions and enhanced optoelectronic properties of GaN/perovskite heterostructures: insight from first-principles calculations. J Mater Sci 56:11352–11363

    CAS  Google Scholar 

  76. Hussain T, Singh D, Gupta SK, Karton A, Sonvane Y, Ahuja R (2019) Efficient and selective sensing of nitrogen containing gases by Si2BN nanosheets under pristine and pre-oxidized conditions. Appl Surf Sci 469:775–780

    CAS  Google Scholar 

  77. Wang SS, Bu KJ, Wang D, Zheng C, Che XL, Han Z, Huang FQ (2021) Synthesis, crystal and electronic structure of a new ternary parkerite selenide Pt3Pb2Se2. J Alloys Compd 853:157092

    CAS  Google Scholar 

  78. Barnett CJ, McCormack JE, Deemer EM, Evans CR, Evans JE, White AO, Dunstan PR, Chianelli RR, Cobley RJ, Barron AR (2020) Enhancement of multiwalled carbon nanotubes’ electrical conductivity using metal nanoscale copper contacts and its implications for carbon nanotube-enhanced copper conductivity. J Phys Chem C 124:18777–18783

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Science and Technology Project of Henan Province (nos. 222102240103 and 192102210048); the Natural Science Foundation of Henan Province (no. 212300410099); the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF2020R1|1A3070962); and the Ph. D. Research Start-up Fund of Anyang Institute of Technology (no. BSJ2019033).

Author information

Authors and Affiliations

Authors

Contributions

Changwei Lai carried out the experimental parts of materials synthesis and characterizations, and wrote the main manuscript text. Xiaoxiao Qu prepared Fig. 1a. Yao Guo wrote the part “2.6 Computational methods” and prepared Fig. 7. Miaomiao Li prepared some data curation. Haixiang Song and Kwan Lee contributed the writing-review and editing, and funding acquisition. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Changwei Lai, Haixiang Song or Kwan Lee.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5611 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, C., Qu, X., Guo, Y. et al. Hierarchical porous Mo-Co3O4-CNTc nanosheets for aqueous rechargeable zinc ion batteries with ultralong life. Adv Compos Hybrid Mater 6, 91 (2023). https://doi.org/10.1007/s42114-023-00669-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00669-6

Keywords

Navigation